forked from open-mmlab/mmaction2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bsn_tem_400x100_1x16_20e_activitynet_feature.py
79 lines (74 loc) · 2.6 KB
/
bsn_tem_400x100_1x16_20e_activitynet_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
_base_ = ['../../_base_/models/bsn_tem.py', '../../_base_/default_runtime.py']
# dataset settings
dataset_type = 'ActivityNetDataset'
data_root = 'data/ActivityNet/activitynet_feature_cuhk/csv_mean_100/'
data_root_val = 'data/ActivityNet/activitynet_feature_cuhk/csv_mean_100/'
ann_file_train = 'data/ActivityNet/anet_anno_train.json'
ann_file_val = 'data/ActivityNet/anet_anno_val.json'
ann_file_test = 'data/ActivityNet/anet_anno_full.json'
test_pipeline = [
dict(type='LoadLocalizationFeature'),
dict(
type='Collect',
keys=['raw_feature'],
meta_name='video_meta',
meta_keys=['video_name']),
dict(type='ToTensor', keys=['raw_feature'])
]
train_pipeline = [
dict(type='LoadLocalizationFeature'),
dict(type='GenerateLocalizationLabels'),
dict(
type='Collect',
keys=['raw_feature', 'gt_bbox'],
meta_name='video_meta',
meta_keys=['video_name']),
dict(type='ToTensor', keys=['raw_feature', 'gt_bbox']),
dict(type='ToDataContainer', fields=[dict(key='gt_bbox', stack=False)])
]
val_pipeline = [
dict(type='LoadLocalizationFeature'),
dict(type='GenerateLocalizationLabels'),
dict(
type='Collect',
keys=['raw_feature', 'gt_bbox'],
meta_name='video_meta',
meta_keys=['video_name']),
dict(type='ToTensor', keys=['raw_feature', 'gt_bbox']),
dict(type='ToDataContainer', fields=[dict(key='gt_bbox', stack=False)])
]
data = dict(
videos_per_gpu=16,
workers_per_gpu=8,
train_dataloader=dict(drop_last=True),
val_dataloader=dict(videos_per_gpu=1),
test_dataloader=dict(videos_per_gpu=1),
test=dict(
type=dataset_type,
ann_file=ann_file_test,
pipeline=test_pipeline,
data_prefix=data_root_val),
val=dict(
type=dataset_type,
ann_file=ann_file_val,
pipeline=val_pipeline,
data_prefix=data_root_val),
train=dict(
type=dataset_type,
ann_file=ann_file_train,
pipeline=train_pipeline,
data_prefix=data_root))
# optimizer
optimizer = dict(
type='Adam', lr=0.001, weight_decay=0.0001) # this lr is used for 1 gpus
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(policy='step', step=7)
total_epochs = 20
# runtime settings
checkpoint_config = dict(interval=1, filename_tmpl='tem_epoch_{}.pth')
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
workflow = [('train', 1), ('val', 1)]
work_dir = 'work_dirs/bsn_400x100_20e_1x16_activitynet_feature/'
tem_results_dir = f'{work_dir}/tem_results/'
output_config = dict(out=tem_results_dir, output_format='csv')