generated from yunqing-me/AdAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
190 lines (172 loc) · 6.36 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
import os
import h5py
from methods import backbone
from methods.backbone import model_dict
from data.datamgr import SimpleDataManager
from options import parse_args, get_best_file, get_assigned_file
from methods.protonet import ProtoNet
from methods.matchingnet import MatchingNet
from methods.gnnnet import GnnNet
from methods.relationnet import RelationNet
import data.feature_loader as feat_loader
import random
import numpy as np
# extract and save image features
def save_features(model, data_loader, featurefile):
f = h5py.File(featurefile, 'w')
max_count = len(data_loader)*data_loader.batch_size
all_labels = f.create_dataset('all_labels',(max_count,), dtype='i')
all_feats=None
count=0
for i, (x,y) in enumerate(data_loader):
if (i % 10) == 0:
print(' {:d}/{:d}'.format(i, len(data_loader)))
x = x.cuda()
feats = model(x)
if all_feats is None:
all_feats = f.create_dataset('all_feats', [max_count] + list( feats.size()[1:]) , dtype='f')
all_feats[count:count+feats.size(0)] = feats.data.cpu().numpy()
all_labels[count:count+feats.size(0)] = y.cpu().numpy()
count = count + feats.size(0)
count_var = f.create_dataset('count', (1,), dtype='i')
count_var[0] = count
f.close()
# evaluate using features
def feature_evaluation(cl_data_file, model, n_way = 5, n_support = 5, n_query = 15):
class_list = cl_data_file.keys()
select_class = random.sample(class_list,n_way)
z_all = []
for cl in select_class:
img_feat = cl_data_file[cl]
perm_ids = np.random.permutation(len(img_feat)).tolist()
z_all.append( [ np.squeeze( img_feat[perm_ids[i]]) for i in range(n_support+n_query) ] )
z_all = torch.from_numpy(np.array(z_all) )
model.n_query = n_query
scores = model.set_forward(z_all, is_feature = True)
pred = scores.data.cpu().numpy().argmax(axis = 1)
y = np.repeat(range( n_way ), n_query )
acc = np.mean(pred == y)*100
return acc
# --- main ---
if __name__ == '__main__':
# parse argument
params = parse_args('test')
print('Testing! {} shots on {} dataset with {} epochs of {}({})'.format(params.n_shot, params.dataset, params.save_epoch, params.name, params.method))
remove_featurefile = True
print('\nStage 1: saving features')
# dataset
print(' build dataset')
if 'Conv' in params.model:
image_size = 84
else:
image_size = 224
split = params.split
loadfile = os.path.join(params.data_dir, params.dataset, split + '.json')
datamgr = SimpleDataManager(image_size, batch_size = 64)
data_loader = datamgr.get_data_loader(loadfile, aug = False)
print(' build feature encoder')
# feature encoder
checkpoint_dir = '%s/checkpoints/%s'%(params.save_dir, params.name)
if params.save_epoch != -1:
modelfile = get_assigned_file(checkpoint_dir,params.save_epoch)
else:
modelfile = get_best_file(checkpoint_dir)
if params.method in ['relationnet', 'relationnet_softmax']:
if params.model == 'Conv4':
model = backbone.Conv4NP()
elif params.model == 'Conv6':
model = backbone.Conv6NP()
else:
model = model_dict[params.model]( flatten = False )
else:
model = model_dict[params.model]()
model = model.cuda()
tmp = torch.load(modelfile)
try:
state = tmp['state']
except KeyError:
state = tmp['model_state']
except:
raise
state_keys = list(state.keys())
for i, key in enumerate(state_keys):
if "feature." in key and not 'gamma' in key and not 'beta' in key:
newkey = key.replace("feature.","")
state[newkey] = state.pop(key)
else:
state.pop(key)
model.load_state_dict(state)
model.eval()
# save feature file
print(' extract and save features...')
if params.save_epoch != -1:
featurefile = os.path.join( checkpoint_dir.replace("checkpoints","features"), split + "_" + str(params.save_epoch)+ ".hdf5")
else:
featurefile = os.path.join( checkpoint_dir.replace("checkpoints","features"), split + ".hdf5")
dirname = os.path.dirname(featurefile)
if not os.path.isdir(dirname):
os.makedirs(dirname)
save_features(model, data_loader, featurefile)
print('\nStage 2: evaluate')
acc_all = []
iter_num = 1000
few_shot_params = dict(n_way = params.test_n_way , n_support = params.n_shot)
# model
print(' build metric-based model')
if params.method == 'protonet':
model = ProtoNet( model_dict[params.model], **few_shot_params)
elif params.method == 'matchingnet':
model = MatchingNet( model_dict[params.model], **few_shot_params )
elif params.method == 'gnnnet':
model = GnnNet( model_dict[params.model], **few_shot_params)
elif params.method in ['relationnet', 'relationnet_softmax']:
if params.model == 'Conv4':
feature_model = backbone.Conv4NP
elif params.model == 'Conv6':
feature_model = backbone.Conv6NP
else:
feature_model = model_dict[params.model]
loss_type = 'mse' if params.method == 'relationnet' else 'softmax'
model = RelationNet( feature_model, loss_type = loss_type , **few_shot_params )
else:
raise ValueError('Unknown method')
model = model.cuda()
model.eval()
# load model
checkpoint_dir = '%s/checkpoints/%s'%(params.save_dir, params.name)
if params.save_epoch != -1:
modelfile = get_assigned_file(checkpoint_dir, params.save_epoch)
else:
modelfile = get_best_file(checkpoint_dir)
if modelfile is not None:
tmp = torch.load(modelfile)
try:
model.load_state_dict(tmp['state'])
except RuntimeError:
print('warning! RuntimeError when load_state_dict()!')
model.load_state_dict(tmp['state'], strict=False)
except KeyError:
for k in tmp['model_state']: ##### revise latter
if 'running' in k:
tmp['model_state'][k] = tmp['model_state'][k].squeeze()
model.load_state_dict(tmp['model_state'], strict=False)
except:
raise
# load feature file
print(' load saved feature file')
cl_data_file = feat_loader.init_loader(featurefile)
# start evaluate
print(' evaluate')
for i in range(iter_num):
acc = feature_evaluation(cl_data_file, model, n_query=15, **few_shot_params)
acc_all.append(acc)
# statics
print(' get statics')
acc_all = np.asarray(acc_all)
acc_mean = np.mean(acc_all)
acc_std = np.std(acc_all)
print(' %d test iterations: Acc = %4.2f%% +- %4.2f%%' %(iter_num, acc_mean, 1.96* acc_std/np.sqrt(iter_num)))
# remove feature files [optional]
if remove_featurefile:
os.remove(featurefile)