forked from yiminghan/twitter-banger-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
char_level_model.py
313 lines (259 loc) · 9.85 KB
/
char_level_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
########
#
# Character Level Training
# Based on Karpathy's lecture #6
# https://www.youtube.com/watch?v=kCc8FmEb1nY
#
########
import torch
import torch.nn as nn
from torch.nn import functional as F
import os
import argparse
# hyperparameters
batch_size = 32 # how many independent sequences will we process in parallel?
block_size = 128 # what is the maximum context length for predictions?
max_iters = 100000
eval_interval = 500
learning_rate = 3e-4
device = "cuda" if torch.cuda.is_available() else "mps"
n_embed = 128
n_head = 4
eval_iters = 200
n_layer = 4 # How much multi head attention layers
dropout = 0.2
# ------------
outdir = "./checkpoints/char_level_models"
torch.set_default_device(device)
class FeedForwardBlock(nn.Module):
def __init__(self, n_embed) -> None:
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed, 4 * n_embed),
nn.ReLU(),
nn.Linear(4 * n_embed, n_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class SelfAttentionHead(nn.Module):
def __init__(self, head_size) -> None:
super().__init__()
self.key = nn.Linear(n_embed, head_size, bias=False)
self.query = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
k = self.key(x) # (B, T, head_size)
q = self.query(x) # (B, T, head_size)
v = self.value(x) # (B, T, head_size)
wei = q @ k.transpose(-2, -1) * 16**-0.5
# float('-inf') blocks the communication from future to past
# but we can actually adjust this later on if we want to leak future info to past
wei = wei.masked_fill(self.tril[:block_size, :block_size] == 0, float("-inf"))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
out = wei @ v # (B, T, head_size)
return out
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, head_size):
super().__init__()
self.heads = nn.ModuleList(
[SelfAttentionHead(head_size) for _ in range(n_heads)]
)
self.proj = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = torch.cat([head(x) for head in self.heads], dim=-1)
return self.dropout(self.proj(x))
class AttentionBlock(nn.Module):
def __init__(self, n_embed, n_heads):
super().__init__()
head_size = n_embed // n_heads
self.attn = MultiHeadAttention(n_heads, head_size)
self.ff = FeedForwardBlock(n_embed)
self.layer_norm1 = nn.LayerNorm(n_embed)
self.layer_norm2 = nn.LayerNorm(n_embed)
def forward(self, x):
x = x + self.attn(self.layer_norm1(x))
x = x + self.ff(self.layer_norm2(x))
return x
class Transformer(nn.Module):
def __init__(self, vocab_size):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_table = nn.Embedding(block_size, n_embed)
# language model head
self.attn_blocks = nn.Sequential(
*[AttentionBlock(n_embed, n_heads=n_head) for _ in range(n_layer)],
nn.LayerNorm(n_embed),
)
self.lm_head = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
token_emb = self.token_embedding_table(idx) # (B,T, n_embed)
pos_emb = self.position_embedding_table(torch.arange(T)) # (T, n_embed)
x = token_emb + pos_emb # (B,T, n_embed)
x = self.attn_blocks(x) # (B,T, n_embed)
logits = self.lm_head(x) # (B,T, vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
# idx is (B, T) array of indices in the current context
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:] # (B, T)
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
return idx
def train(poaster_id):
print(f"=== Training for {poaster_id} ===")
with open(f"./raw/{poaster_id}.txt", "r", encoding="utf-8") as f:
text = f.read()
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = {ch: i for i, ch in enumerate(chars)}
itos = {i: ch for i, ch in enumerate(chars)}
encode = lambda s: [
stoi[c] for c in s
] # encoder: take a string, output a list of integers
decode = lambda l: "".join(
[itos[i] for i in l]
) # decoder: take a list of integers, output a string
# Train and test splits
data = torch.tensor(encode(text), dtype=torch.long)
n = int(0.9 * len(data)) # first 90% will be train, rest val
train_data = data[:n]
val_data = data[n:]
# data loading
def get_batch(split):
# generate a small batch of data of inputs x and targets y
data = train_data if split == "train" else val_data
ix = torch.randint(len(data) - block_size, (batch_size,))
x = torch.stack([data[i : i + block_size] for i in ix])
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
X, Y = get_batch(split)
logits, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
model = Transformer(vocab_size)
total_params = sum(p.numel() for p in model.parameters())
print(f"Number of parameters: {total_params}")
m = model.to(device)
# create a PyTorch optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
for iter in range(max_iters):
# every once in a while evaluate the loss on train and val sets
if iter % eval_interval == 0:
losses = estimate_loss()
print(
f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}"
)
# sample a batch of data
xb, yb = get_batch("train")
# evaluate the loss
logits, loss = model(xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
checkpoint = {"model": model.state_dict(), "optimizer": optimizer.state_dict()}
print(f"saving checkpoint to {outdir}")
torch.save(checkpoint, os.path.join(outdir, f"{poaster_id}.pt"))
# generate from the model
context = torch.zeros((1, block_size), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
def sample(poaster_id):
with open(f"./raw/{poaster_id}.txt", "r", encoding="utf-8") as f:
text = f.read()
# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
itos = {i: ch for i, ch in enumerate(chars)}
decode = lambda l: "".join(
[itos[i] for i in l]
) # decoder: take a list of integers, output a string
model = Transformer(vocab_size)
total_params = sum(p.numel() for p in model.parameters())
print(f"Number of parameters: {total_params}")
model_path = os.path.join(outdir, f"{poaster_id}.pt")
model_dict = torch.load(model_path)["model"]
model.load_state_dict(model_dict)
print(f"====== Load From {model_path} =====")
m = model.to(device)
context = torch.zeros((1, block_size), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=500)[0].tolist()).strip())
parser = argparse.ArgumentParser(
prog="Twitter Bangers",
description="Char level transformer model for generating tweets from highbie poasters",
)
parser.add_argument("twitter_id") # positional argument
parser.add_argument("-t", "--train", action="store_true")
parser.add_argument("-s", "--seed", default=1337)
args = parser.parse_args()
torch.manual_seed(args.seed)
print(args)
if args.train == True:
# Training parameters are default for now
train(args.twitter_id)
else:
sample(args.twitter_id)
# If you just want to train everything:
# ls ./raw | cut -f1 -d'.'
poaster_ids = [
# "10x_er",
# "1a1n1d1y",
# "BasedBeffJezos",
# "Ryan_Gasoline",
# "Soul0Engineer",
# "TheWeebDev",
# "anammostarac",
# "ctjlewis",
# "fabiankunick",
"goth600",
# "growing_daniel",
# "kosenjuu",
# "powerbottomdad1",
# "realGeorgeHotz",
# "shauseth",
# "skooookum",
# "t3dotgg",
# "tekbog",
# "tszzl",
# "var_epsilon",
# "wagieeacc",
# "wireless_anon",
# "xlr8harder",
# "yacineMTB",
]
# for p in poaster_ids:
# train(p)