Skip to content

Latest commit

 

History

History
306 lines (211 loc) · 10.1 KB

README.rst

File metadata and controls

306 lines (211 loc) · 10.1 KB

PyDiatomic README

https://travis-ci.com/stggh/PyDiatomic.svg?branch=master

Introduction

PyDiatomic solves the time-independent coupled-channel Schroedinger equation using the Johnson renormalized Numerov method [1]. This is very compact and stable algorithm.

The code is directed to the computation of photodissociation cross sections for diatomic molecules. The coupling of electronic states results in transition profile broadening, line-shape asymmetry, and intensity sharing. A coupled-channel calculation is the only correct method compute the photodissociation cross-section.

Installation

PyDiatomic requires Python 3.6 (*), numpy, scipy and periodictable. If you don't already have Python, we recommend an "all in one" Python package such as the Anaconda Python Distribution, which is available for free.

Download the latest version from github

git clone https://github.com/stggh/PyDiatomic.git

cd to the PyDiatomic directory, and use

python setup.py install --user

Or, if you wish to edit the PyDiatomic source code without re-installing each time

python setup.py develop --user

periodictable

pip install periodictable

execution speed: There are big gains > x8 in using the intel math kernel librayr

sudo apt install intel-mkl

(*) due to the use of infix matrix multiplication @. To run with python < 3.5, replace A @ B with np.dot(A, B) in cse.py and expectation.py.

Example of use

PyDiatomic has a wrapper classes :class:`cse.Cse()` and :class:`cse.Transition()`

:class:`cse.Cse()` set ups the CSE problem (interaction matrix of potential energy curves, and couplings) and solves the coupled channel Schroedinger equation for an initial guess energy.

Input parameters may be specified in the class instance, or they will be requested if required.

import cse
X = cse.Cse('O2')   # class instance
# CSE: potential energy curves [X3S-1.dat]:   # requested parameter
X.solve(800)    # solves TISE for energy ~ 800 cm-1
# attributes
#     AM                   limits               rot
#     Bv                   molecule             set_coupling()
#     calc                 mu                   set_mu()
#     cm                   node_count()         solve()
#     diabatic2adiabatic() openchann            vib
#     energy               pecfs                VT
#     levels()             R                    wavefunction
X.cm
# 787.3978354211097
X.vib
# 0
X.calc
# {0: (787.3981436364634, 1.4376793143458806)}   {vib: (eigenvalue, Bv}
X  # class representation
# Molecule: O2  mass: 1.32801e-26 kg
# Electronic state: X3S-1.dat
# eigenvalues (that have been evaluated for this state):
# v    energy(cm-1)    Bv(cm-1)
# 0       787.398      1.43768
import cse
X = cse.Cse('O2', VT=['X3S-1.dat'])
X.levels(vmax=5)  # evaluates energy levels for v=0, .., vmax
                  # attribute .calc
X  # class representation
# Molecule: O2  mass: 1.32801e-26 kg
# Electronic state: X3S-1.dat
# evaluated eigenvalues:
# v    energy(cm-1)    Bv(cm-1)
# 0       787.398      1.43768
# 1      2337.360      1.42051
# 2      3867.008      1.40407
# 3      5375.938      1.38823
# 4      6863.744      1.37288
# 5      8335.901      1.35919
# 7     11196.366      1.32867
# 11     16131.082      1.22378
# 15     21719.531      1.20443
# 17     24119.541      1.17186
# 24     31559.738      0.99627
# 25     32754.587      1.03787
# 35     40566.037      0.74300

:class:`cse.Transition()` evaluates two couple channel problems, for an intitial and final set of coupled channels, to calculate the photodissociation cross section.

import numpy as np
import cse
# initial state
O2X = cse.Cse('O2', VT=['potentials/X3S-1.dat'], en=800)
# final state
O2B = cse.Cse('O2', VT=['potentials/B3S-1.dat'])
# transition
BX = cse.Transition(O2B, O2X)
# methods
# BX.calculate_xs()
BX.calculate_xs(transition_energy=np.arange(110, 174, 0.1), eni=800)
# attributes
# the calculated cross section BX.xs and those of the initial BX.gs and
# final coupled states BS.us

A simple ^{3}\Sigma_{u}^{-} \leftrightarrow {}^{3}\Sigma^{-}_{u} Rydberg-valence coupling in O2

import numpy as np
import cse
import matplotlib.pyplot as plt

O2X = cse.Cse('O2', VT=['X3S-1.dat'], en=800)
O2B = cse.Cse('O2', VT=['B3S-1.dat', 'E3S-1.dat'], coup=[4000])
O2BX = cse.Transition(B, X, dipolemoment=[1, 0],
           transition_energy=np.arange(110, 174, 0.1))

plt.plot(O2BX.wavenumber, O2BX.xs*1.0e16)
plt.xlabel("Wavenumber (cm$^{-1}$)")
plt.ylabel("Cross section ($10^{-16}$ cm$^{2}$)")
plt.axis(ymin=-0.2)
plt.title("O$_{2}$ $^{3}\Sigma_{u}^{-}$ Rydberg-valence interaction")
plt.savefig("RVxs.png", dpi=75)
plt.show()
calculated cross section

example_O2xs.py:

example_O2xs

example_O2_continuity.py:

example_O2_continuity

example_O2X_fine_structure.py:

PyDiatomic O2 X-state fine-structure levels
  energy diffences (cm-1): Rouille - PyDiatomic
 N        F1          F2          F3
 1      -0.000       0.000       0.000
 3      -0.005       0.000       0.009
 5      -0.009       0.000       0.013
 7      -0.013       0.000       0.017
 9      -0.017       0.000       0.022
11      -0.021       0.000       0.026
13      -0.025       0.000       0.030
15      -0.029      -0.000       0.034
17      -0.033      -0.000       0.039
19      -0.037      -0.000       0.043
21      -0.041      -0.000       0.047

example_O2_SRB4.py:

example_O2_SRB4

example_HO.py:

example_HO

example_rkr.py:

example_rkr

Rotation

import cse

X = cse.Cse('O2', VT=['X3S-1.dat'])  # include path to potential curve
X.solve(900, rot=0)
X.cm
# 787.3978354211097
X.Bv
# 1.4376793638070153
X.solve(900, 20)
X.cm
# 1390.369249612629
# (1390.369-787.398)/(20*21) = 1.4356

Timing

Each transition energy solution to the coupled-channel Schroedinger equation is a separate calculation. PyDiatomic uses multiprocessing to perform these calculations in parallel, resulting in a substantial reduction in execution time on multiprocessor systems. e.g. for example_O2xs.py:

machine GHz CPU(s) time (sec)
i7-9700 4.6 8 3
Xeon E5-2697 2.6 64 6
i7-6700 3.4 8 17
Macbook pro i5 2.4 4 63
raspberry pi 3 1.35 4 127

Documentation

PyDiatomic documentation is available at readthedocs.

Historical

PyDiatomic is a Python implementation of the Johnson renormalized Numerov method. It provides a simple introduction to the profound effects of channel-coupling in the calculation of diatomic photodissociation spectra.

More sophisticated C and Fortran implementations have been in use for a number of years, see references below. These were developed by Stephen Gibson (ANU), Brenton Lewis (ANU), and Alan Heays (ANU, Leiden, and ASU).

Applications

The following publications have made use of PyDiatomic:

[1] Z. Xu, N. Luo, S. R. Federman, W. M. Jackson, C-Y. Ng, L-P. Wang, and K. N. Crabtree "Ab Initio Study of Ground-state CS Photodissociation via Highly Excited Electronic States" Astrophy. J. 86, 882 (2019)

[2] Z. Xu, S. R. Federman, W. M. Jackson, C-Y. Ng, L-P. Wang, and K. N. Crabtree "Multireference configuration interaction study of the predissociation of C₂ via its F¹Πu state" J. Chem. Phys. (2022)

References

[1] B.R. Johnson "The renormalized Numerov method applied to calculating the bound states of the coupled-channel Schroedinger equation" J. Chem. Phys. 69, 4678 (1978)

[2] B.R. Lewis, S.T. Gibson, F. T. Hawes, and L. W. Torop "A new model for the Schumann-Runge bands of O₂" Phys. Chem. Earth(C) 26 519 (2001)

[3] B.R. Lewis, S.T. Gibson, and P.M. Dooley "Fine-structure dependence of predissociation linewidth in the Schumann-Runge bands of molecular oxygen" " J. Chem. Phys. 100 7012 (1994)

[4] A. N. Heays "Photoabsorption and photodissociation in molecular nitrogen, PhD Thesis (2011)

Citation

If you find PyDiatomic useful in your work please consider citing this project.