forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tf2_albert_encoder_checkpoint_converter.py
132 lines (111 loc) · 4.96 KB
/
tf2_albert_encoder_checkpoint_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A converter from a tf1 ALBERT encoder checkpoint to a tf2 encoder checkpoint.
The conversion will yield an object-oriented checkpoint that can be used
to restore a AlbertTransformerEncoder object.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import app
from absl import flags
import tensorflow as tf
from official.modeling import activations
from official.nlp.albert import configs
from official.nlp.bert import tf1_checkpoint_converter_lib
from official.nlp.modeling import networks
FLAGS = flags.FLAGS
flags.DEFINE_string("albert_config_file", None,
"Albert configuration file to define core bert layers.")
flags.DEFINE_string(
"checkpoint_to_convert", None,
"Initial checkpoint from a pretrained BERT model core (that is, only the "
"BertModel, with no task heads.)")
flags.DEFINE_string("converted_checkpoint_path", None,
"Name for the created object-based V2 checkpoint.")
ALBERT_NAME_REPLACEMENTS = (
("bert/encoder/", ""),
("bert/", ""),
("embeddings/word_embeddings", "word_embeddings/embeddings"),
("embeddings/position_embeddings", "position_embedding/embeddings"),
("embeddings/token_type_embeddings", "type_embeddings/embeddings"),
("embeddings/LayerNorm", "embeddings/layer_norm"),
("embedding_hidden_mapping_in", "embedding_projection"),
("group_0/inner_group_0/", ""),
("attention_1/self", "self_attention"),
("attention_1/output/dense", "self_attention_output"),
("LayerNorm/", "self_attention_layer_norm/"),
("ffn_1/intermediate/dense", "intermediate"),
("ffn_1/intermediate/output/dense", "output"),
("LayerNorm_1/", "output_layer_norm/"),
("pooler/dense", "pooler_transform"),
("cls/predictions/output_bias", "cls/predictions/output_bias/bias"),
("cls/seq_relationship/output_bias", "predictions/transform/logits/bias"),
("cls/seq_relationship/output_weights",
"predictions/transform/logits/kernel"),
)
def _create_albert_model(cfg):
"""Creates a BERT keras core model from BERT configuration.
Args:
cfg: A `BertConfig` to create the core model.
Returns:
A keras model.
"""
albert_encoder = networks.AlbertTransformerEncoder(
vocab_size=cfg.vocab_size,
hidden_size=cfg.hidden_size,
embedding_width=cfg.embedding_size,
num_layers=cfg.num_hidden_layers,
num_attention_heads=cfg.num_attention_heads,
intermediate_size=cfg.intermediate_size,
activation=activations.gelu,
dropout_rate=cfg.hidden_dropout_prob,
attention_dropout_rate=cfg.attention_probs_dropout_prob,
sequence_length=cfg.max_position_embeddings,
type_vocab_size=cfg.type_vocab_size,
initializer=tf.keras.initializers.TruncatedNormal(
stddev=cfg.initializer_range))
return albert_encoder
def convert_checkpoint(bert_config, output_path, v1_checkpoint):
"""Converts a V1 checkpoint into an OO V2 checkpoint."""
output_dir, _ = os.path.split(output_path)
# Create a temporary V1 name-converted checkpoint in the output directory.
temporary_checkpoint_dir = os.path.join(output_dir, "temp_v1")
temporary_checkpoint = os.path.join(temporary_checkpoint_dir, "ckpt")
tf1_checkpoint_converter_lib.convert(
checkpoint_from_path=v1_checkpoint,
checkpoint_to_path=temporary_checkpoint,
num_heads=bert_config.num_attention_heads,
name_replacements=ALBERT_NAME_REPLACEMENTS,
permutations=tf1_checkpoint_converter_lib.BERT_V2_PERMUTATIONS,
exclude_patterns=["adam", "Adam"])
# Create a V2 checkpoint from the temporary checkpoint.
model = _create_albert_model(bert_config)
tf1_checkpoint_converter_lib.create_v2_checkpoint(model, temporary_checkpoint,
output_path)
# Clean up the temporary checkpoint, if it exists.
try:
tf.io.gfile.rmtree(temporary_checkpoint_dir)
except tf.errors.OpError:
# If it doesn't exist, we don't need to clean it up; continue.
pass
def main(_):
output_path = FLAGS.converted_checkpoint_path
v1_checkpoint = FLAGS.checkpoint_to_convert
albert_config = configs.AlbertConfig.from_json_file(FLAGS.albert_config_file)
convert_checkpoint(albert_config, output_path, v1_checkpoint)
if __name__ == "__main__":
app.run(main)