-
Notifications
You must be signed in to change notification settings - Fork 11
/
deploy.py
812 lines (560 loc) · 43.1 KB
/
deploy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
from __future__ import division
import re
import sys
import random
import argparse
import requests
import json
import textblob
import nltk
import pandas as pd
import numpy as np
import datetime as dt
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from client import get_data
from functools import partial, reduce
from multiprocessing.pool import Pool
from datetime import datetime
from bs4 import BeautifulSoup
from IPython.display import display
from nltk.stem import WordNetLemmatizer
from nltk.corpus import wordnet
from coala_utils.decorators import generate_ordering
def safecall(function, default=0, exception=Exception, *args):
try:
return function(*args)
except exception:
return default
def banner():
print(" ")
print(" ___ ___ ___ ")
print(" /\ \ /\ \ ___ /\__\ ")
print(" /::\ \ /::\ \ /\ \ /::| | ")
print(" /:/\ \ \ /:/\:\ \ \:\ \ /:|:| | ")
print(" _\:\~\ \ \ /::\~\:\ \ /::\__\ /:/|:| |__ ")
print(" /\ \:\ \ \__\ /:/\:\ \:\__\ __/:/\/__/ /:/ |:| /\__\ ")
print(" \:\ \:\ \/__/ \/__\:\/:/ / /\/:/ / \/__|:|/:/ / ")
print(" \:\ \:\__\ \::/ / \::/__/ |:/:/ / ")
print(" \:\/:/ / \/__/ \:\__\ |::/ / ")
print(" \::/ / \/__/ /:/ / ")
print(" \/__/ \/__/ ")
print("\b Red Team Intelligence ")
print("\n https://github.com/zadewg/Election-Meddling \n\n")
def parsein():
global TARGETS, NUM, BENEFIT
parser = argparse.ArgumentParser(description='https://github.com/zadewg/Election-Meddling')
parser.add_argument('-t','--target', help='Target sername(s)', required=True)
parser.add_argument('-c','--count', help='Number of tweets to retrieve from user.', required=False)
parser.add_argument('-b','--benefit', help='Political wing to benefit', required=True)
args = vars(parser.parse_args())
TARGETS = [args['target']]
NUM = args['count'] or None
BENEFIT = args['benefit']
class Splitter(object):
def __init__(self):
self.splitter = nltk.data.load('tokenizers/punkt/english.pickle')
self.tokenizer = nltk.tokenize.TreebankWordTokenizer()
def split(self,text):
sentences = self.splitter.tokenize(text)
tokens = [self.tokenizer.tokenize(sent) for sent in sentences]
return tokens
class LemmatizationWithPOSTagger(object):
def __init__(self):
pass
def get_wordnet_pos(self,treebank_tag):
"""
return WORDNET POS compliance to WORDENT lemmatization (a,n,r,v)
"""
if treebank_tag.startswith('J'):
return wordnet.ADJ
elif treebank_tag.startswith('V'):
return wordnet.VERB
elif treebank_tag.startswith('N'):
return wordnet.NOUN
elif treebank_tag.startswith('R'):
return wordnet.ADV
else:
return wordnet.NOUN
def pos_tag(self,tokens):
pos_tokens = [nltk.pos_tag(token) for token in tokens]
pos_tokens = [ [(word, lemmatizer.lemmatize(word,self.get_wordnet_pos(pos_tag)), [pos_tag]) for (word,pos_tag) in pos] for pos in pos_tokens]
return pos_tokens
lemmatizer = WordNetLemmatizer()
splitter = Splitter()
lemmatization_using_pos_tagger = LemmatizationWithPOSTagger()
def data_preparation(tweet): #nltk.tag._POS_TAGGER #treebank tag set https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
url_regex = r'https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)'
clean = re.sub(url_regex, '', tweet, flags = re.MULTILINE) # strip out urls. urls, ew, nasty.
clean = clean.replace('\n', ' ').replace("'", " ").replace('"', ' ')
try:
clean = clean.decode("utf-8-sig").replace(u"\ufffd", "?") # strip out Byte Order Marks
print("Detected BOS")
except:
pass
clean = re.sub(r'[^a-zA-Z ]', '', clean, flags = re.MULTILINE) # the "#" symbol is actually called octothorpe. bananas.
tokens = splitter.split(clean) # Tokeniztion
lemma_pos_token = lemmatization_using_pos_tagger.pos_tag(tokens) # Part of speech tagging.
out = ' '.join([out[1] for out in lemma_pos_token[0]])
return out
''' #https://pypi.org/project/hunspell/ #Double tokenizing. hunspell for units, nltk for context.
import hunspell
hobj = hunspell.HunSpell('/usr/share/myspell/en_US.dic', '/usr/share/myspell/en_US.aff')
hobj.spell('spookie')
hobj.suggest('spookie')
hobj.spell('spooky')
hobj.analyze('linked')
hobj.stem('linked')
'''
def analize_sentiment(tweet):
'''
Utility function to classify the polarity of a tweet
using textblob.
'''
try:
analysis = textblob.TextBlob(data_preparation(tweet))
except:
analysis = textblob.TextBlob(tweet)
if analysis.sentiment.polarity > 0:
return 1, int(analysis.sentiment.subjectivity)
elif analysis.sentiment.polarity == 0:
return 0, int(analysis.sentiment.subjectivity)
else:
return -1, int(analysis.sentiment.subjectivity)
def main(screenname, num):
tweets = get_data(screenname, num)
data = pd.DataFrame(data=[tweet.text for tweet in tweets], columns=['Tweets'])
data['len'] = np.array([len(tweet.text) for tweet in tweets])
data['ID'] = np.array([tweet.uid for tweet in tweets])
data['Date'] = np.array([tweet.timestamp for tweet in tweets])
data['Likes'] = np.array([tweet.likes for tweet in tweets])
data['RTs'] = np.array([tweet.retweets for tweet in tweets])
data['SP'] = np.array([ analize_sentiment(data_preparation(tweet))[0] for tweet in data['Tweets'] ])
data['SS'] = np.array([ analize_sentiment(data_preparation(tweet))[1] for tweet in data['Tweets'] ])
display(data)
pos_tweets = [ tweet for index, tweet in enumerate(data['Tweets']) if data['SP'][index] > 0]
neu_tweets = [ tweet for index, tweet in enumerate(data['Tweets']) if data['SP'][index] == 0]
neg_tweets = [ tweet for index, tweet in enumerate(data['Tweets']) if data['SP'][index] < 0]
sbj_tweets = [ tweet for index, tweet in enumerate(data['Tweets']) if data['SS'][index] == 1]
obj_tweets = [ tweet for index, tweet in enumerate(data['Tweets']) if data['SS'][index] == 0]
print("\n\nPercentage of positive tweets: {}%".format(len(pos_tweets)*100/len(data['Tweets'])))
print("Percentage of neutral tweets: {}%".format(len(neu_tweets)*100/len(data['Tweets'])))
print("Percentage de negative tweets: {}%".format(len(neg_tweets)*100/len(data['Tweets'])))
print("Average subjectivity: {}%\n\n\n".format(len(sbj_tweets)*100/len(data['Tweets'])))
# for tweet in data['Tweets'].head(1):
# print("\nORIGINAL SAMPLE: {}".format(tweet))
# print("\nSANITIZED SAMPLE: {}\n\n".format(data_preparation(tweet)))
hillarySentiments = [0]
hillaryKeywords = ['hillary', 'clinton', 'hillaryclinton']
trumpSentiments = [0]
trumpKeywords = ['trump', 'realdonaldtrump']
cruzSentiments = [0]
cruzKeywords = ['cruz', 'tedcruz']
bernieSentiments = [0]
bernieKeywords = ['bern', 'bernie', 'sanders', 'sensanders']
obamaSentiments = [0]
obamaKeywords = ['obama', 'barack', 'barackobama']
republicanSentiments = [0]
republicanKeywords = ['republican', 'conservative', 'republican', 'republicans', 'republicanparty', 'republicandebate', 'republicansforberniesanders', 'republicanmemes', 'republicants', 'republicanlogic', 'republicanssuck', 'republicanhypocrisy', 'republicanprimary', 'republicansnowflakes', 'republicanos', 'republicanwomen', 'republicanbullshit', 'republicanvalues', 'republicanism', 'republicant', 'republicangirls', 'republicanpresidentialcandidate', 'republicanmountain', 'republicano', 'republicansaretheproblem', 'republicanera', 'republicanopub', 'republicanconvention', 'republicandebate', 'republicanforlife', 'republicansfortrump', 'republicansrule', 'republicanstrong', 'republicansunite', 'republicantaxplan', 'republicanthinking', 'republicantrump', 'republicanweed', 'republicanyonne', 'republicansforbernie', 'republicansarewhywecanthavenicethings', 'republicanarchitecture', 'republicanartist', 'republicanbabes', 'republicanclownshow', 'republicancorruption', 'republicandelegate', 'republicangirl', 'republicanidiot', 'republicaninstagram', 'republicanmedia', 'republicannominee', 'republicancandidate', 'republicanpride', 'republicanpropaganda', 'republicanrule', 'republicana']
democratSentiments = [0]
democratKeywords = ['democrat', 'dems', 'liberal', 'democracy', 'democrat', 'democrats', 'democratic', 'democraticparty', 'democraticsocialism', 'democraticsocialist', 'democraticdebate', 'democraticrepublicofcongo', 'democratssuck', 'democratie', 'democraticprimary', 'democratia', 'democraticconfederalism', 'democratsfortrump', 'democrata', 'democrate', 'democratgu', 'democrats', 'democratsabroad', 'democraticpresidentialdebate', 'democratization', 'democratizar', 'democraticnationalcommittee', 'democraticcamera', 'democratpoint', 'democratabarberclub', 'democraticrepublic', 'democratsneedtowin', 'democraticalliance', 'democratparty', 'democraticwhores', 'democratsareisis', 'democraticunionistparty', 'democraticsocislist', 'democratikdesign', 'democratsracist', 'democratsunite', 'democratsaredemons', 'democratizationofluxury', 'democratizeecommerce', 'democratsareracist', 'democratsinthehouse', 'democratizzare', 'democratizing', 'democraticnationalconvention', 'democraticcitizenship', 'democraticcaucus', 'democraticart', 'democraticaocialism', 'democratica', 'democratdonkey', 'democratconvention', 'democratbill', 'democratasontheradio', 'democratas', 'democratandchronicle', 'democraticdebate', 'democraticdecisionmaking', 'democraticschool', 'democratics', 'democraticrevolution', 'democraticrepublicanorwhatever', 'democraticreplublicofcongo', 'democraticreforms', 'democraticpeoplesrepublicofkorea', 'democraticpart', 'democraticownership', 'democraticnomination', 'democraticeducation', 'democratacalcados']
gunsSentiments = [0]
gunsKeywords = ['guns', 'gun', 'nra', 'pistol', 'firearm', 'shooting', 'gun', 'gunporn', 'guns', 'gunsdaily', 'gunsofinstagram', 'gunshow', 'gunstagram', 'gunslinger', 'gunsallowed', 'gunseason', 'gunsofig', 'gunshot', 'gunspictures', 'gunslifestyle', 'gunstore', 'gunsdailyusa', 'gunsafety', 'gunsout', 'gunsfanatics', 'gunsmith', 'gunsandammo', 'gunsandgirls', 'gunsbadassery', 'gunsforhands', 'gunsense', 'gunsup', 'gunscanada', 'gunsaz', 'gunsbitch', 'gunshop', 'gunsmithing', 'gunstonecreations', 'gunshots', 'gunstuff', 'gunsandcoffee', 'gunssavelives', 'gunsafe', 'gunsan', 'gunshotwound', 'gunsdaily1', 'gunsda', 'gunshinestate', 'gunsandbullets', 'gunsmithclothing', 'gunshooting', 'gunship', 'gunslingers', 'gunsdontkillpeople', 'gunspinner', 'gunsandgear', 'gunsandships', 'gunsofinsta', 'gunsofthepatriots', 'gunswag', 'gunsonpegs', 'gunslover', 'gunsmithsinhouston', 'gunslove', 'gunsfordays', 'gunsofboom', 'gunsails', 'gunshirt', 'gunsheesha', 'gunsales', 'gunsale', 'gunselfie', 'gunsallday', 'gunsuphoesdown', 'gunspredator', 'gunsrights', 'gunsmoke', 'gunsafemovers', 'gunsnothingelse', 'gunsinc', 'gunsplay', 'gunstock', 'gunsdrops', 'gunstoys', 'gunshirts', 'gunsyndicate', 'gunslife', 'gunsforsale', 'gunsofmayhem', 'gunsofsteel', 'gunsblazing', 'gunslingergirl', 'gunsandstuff', 'gunslings', 'gunsdrawn', 'gunsdownlifeup', 'gunstrokemc', 'gunstroke', 'gunsteel', 'gunskins', 'gunstrokesupplyco', 'gunsporn', 'gunsgunsguns', 'gunstyle', 'gunsnbutter', 'gunsonguns', 'gunsnbuns', 'gunsdaly', 'gunsmokebreakers', 'gunshu', 'gunshopping', 'gunsnrose', 'gunshoot', 'gunshotgoodbye', 'gunsshow', 'gunshootings', 'gunshy', 'gunsword', 'gunshows', 'gunsight', 'gunsjet', 'gunswithgirls', 'gunsofbrixton', 'gunsunderground', 'gunsuit', 'gunsofinstagrams', 'gunsontour', 'gunsorglitter', 'gunsquad', 'gunstagrammers', 'gunstocks', 'gunstonstreet', 'gunslikedave', 'gunsusa', 'gunsurvivor', 'gunsmithgirls', 'gunsnhoses', 'gunsmithstrength', 'gunsnammo', 'gunstarsuperheroes', 'gunstorage', 'gunsdonot', 'gunsandbutter', 'gunscarszombies', 'gunsandbuns', 'gunsandtactics', 'gunsandbeer', 'gunsammoamerica', 'gunsandwomans', 'gunsandwhiskey', 'gunsfishingandotherstuff', 'gunsandglory', 'gunscover', 'gunsandpearls', 'gunsandknives', 'gunsdownbikesup', 'gunsandhoses', 'gunseason', 'gunscreen', 'gunsandsavvy', 'gunsmylife', 'gunsgirls', 'gunsdontkillpeoplepeoplekillpeople', 'gunsaredrawn', 'gunsha', 'gunsgym', 'gunsgodgoverment', 'gunsafes', 'gunsgirlsandthegarage', 'gunsdays', 'gunsfordays']
immigrationSentiments = [0]
immigrationKeywords = ['immigration', 'immigrants', 'citizenship', 'naturalization', 'visas', 'immigrationclinic', 'immigrationconsulant', 'immigrationcontrol', 'immigrationdetention', 'immigrationfasttrack', 'immigrationhadley', 'immigrationhistory', 'immigrationtocanada', 'immigration', 'immigrationreform', 'immigrationlaw', 'immigrationlawyer', 'immigrationcanada', 'immigrationattorney', 'immigrationservices', 'immigrationterminal', 'immigrationprogram', 'immigrationmuseum', 'immigrationstories', 'immigrationrights', 'immigrationexpert', 'immigrationpanama', 'immigrationmedical', 'immigrationraids', 'immigrationteam', 'immigrationreformnow', 'immigrations', 'immigrationsolutionslawyers', 'immigrationspotlight', 'immigrationmarch', 'immigrationlaws', 'immigrationaction', 'immigrationadvisor', 'immigrationadvocate', 'immigrationanswers', 'immigrationappeals', 'immigrationattorneys', 'immigrationaustralia']
employmentSentiments = [0]
employmentKeywords = ['jobs', 'employment', 'unemployment', 'job']
inflationSentiments = [0]
inflationKeywords = ['inflate', 'inflation', 'price hike', 'price increase', 'prices rais']
minimumwageupSentiments = [0]
minimumwageupKeywords = ['raise minimum wage', 'wage increase', 'raise wage', 'wage hike', 'minimumwagedreamz', 'minimumwageincrease']
abortionSentiments = [0]
abortionKeywords = ['abortion', 'prochoice', 'plannedparenthood', 'abortion', 'abortionismurder', 'abortions', 'abortionrights', 'abortionaccess', 'abortionisnotmurder', 'abortioniswrong', 'abortionstigma', 'abortionkills', 'abortionists', 'abortionissin', 'abortionwithoutborders', 'abortionacesss', 'abortioncare', 'abortionstories', 'abortionhurtswomen', 'abortiondoula', 'abortionist', 'abortionenthusiast', 'abortionexploitswomen', 'abortionsurivor', 'abortionsupportnetwork', 'abortionsucks', 'abortionisacrime', 'abortionishealthcare', 'abortionalternatives', 'abortionrightsnow', 'abortionban', 'abortionpositive', 'abortionpill', 'abortionoptions', 'abortionislife', 'abortionmeme', 'abortionfunds', 'abortiondiscriminates', 'abortionisnotacrime', 'abortionondemand']
governmentspendingSentiments = [0]
governmentspendingKeywords = ['govspending', 'governmentspending', 'governmentspend', 'expenditure']
taxesupSentiments = [0]
taxesupKeywords = ['raisetax', 'taxhike', 'taxesup', 'taxup', 'increasetaxes', 'taxesincrease', 'taxincrease']
taxesdownSentiments = [0]
taxesdownKeywords = ['lowertax', 'taxcut', 'taxslash', 'taxesdown', 'taxdown', 'decreasetaxes', 'taxesdecrease', 'taxdecrease', 'taxesarescary', 'taxessuck', 'taxesarescary']
deathpenaltySentiments = [0]
deathpenaltyKeywords = ['deathrow', 'deathpenalty']
healthcareSentiments = [0]
healthcareKeywords = ['healthcare', 'healthcareforall', 'healthcaredesign', 'healthcaremarketing', 'healthcareprovider', 'healthcaremanagement', 'healthcarereform', 'healthcarecosts', 'healthcareassistant', 'healthcareadministration', 'healthcareprofessional', 'healthcarecostsareinsane', 'healthcareit', 'healthcarewithaheart', 'healthcareworkers', 'healthcareprofessionals', 'healthcarelife', 'healthcarepowerof', 'healthcarefinance', 'healthcareproduct', 'healthcareworker', 'healthcareequipment', 'healthcareexcellence', 'healthcareers', 'healthcaretech', 'healthcarejobs', 'healthcareservices', 'healthcarenotsickcare', 'healthcaremanager', 'healthcarecompliance', 'healthcareaide', 'healthcaresystem', 'healthcareinsurance', 'healthcareersdayonthehill', 'healthcareisahumanright', 'healthcarecost', 'healthcaregov', 'healthcareconnected', 'healthcarephoto', 'healthcareaustralia', 'healthcaresolutions', 'healthcarebranding', 'healthcaresocialmedia', 'healthcareproviders', 'healthcareisateamsport', 'healthcareseminar', 'healthcareproblems', 'healthcarepowerofattorney', 'healthcareapproved', 'healthcarematters', 'healthcaremarket', 'healthcareart', 'healthcareassistants', 'healthcareapp', 'healthcareforthehomeless', 'healthcareforeveryone', 'healthcareadmin', 'healthcarevoter', 'healthcarecrisis', 'healthcareconference', 'healthcare4all', 'healthcaretraining', 'healthcareevolution', 'healthcaretips', 'healthcarecentres', 'healthcarecenter', 'healthcarestaff', 'healthcaresucks', 'healthcareproxy', 'healthcarerebrand', 'healthcarequality', 'healthcareafrica', 'healthcareaintfree', 'healthcareshaklee', 'healthcareprograms', 'healthcareadvertising', 'healthcarewarriors', 'healthcaresuite', 'healthcaresales', 'healthcaretax', 'healthcareadvertisement', 'healthcaretime', 'healthcareselfcare', 'healthcarescience', 'healthcaresalesmentor', 'healthcareunit', 'healthcarereformsucks', 'healthcarevirtuallyanywhere', 'healthcarereformact', 'healthcarealternativesystems', 'healthcareproducttester', 'healthcareproducts', 'healthcareathletx', 'healthcareawards2017', 'healthcarecebu', 'healthcareaz', 'healthcarebpo', 'healthcaredubai', 'healthcaredotgovfailing', 'healthcaredollars', 'healthcaredesignation', 'healthcarecurrentevents', 'healthcarecoverage', 'healthcarebrooklyn', 'healthcarecareer', 'healthcareconsulting', 'healthcareconsultant', 'healthcarecompanion', 'healthcarefraud', 'healthcareindustry', 'healthcarejob', 'healthcareprobs', 'healthcarepoa', 'healthcareph', 'healthcarepenalty', 'healthcarepackaging', 'healthcareondemand', 'healthcareneeds', 'healthcareapps', 'healthcarearchitecture', 'healthcaremakeover', 'healthcareleadership', 'healthcareleader', 'healthcarejustice', 'healthcareassociatedinfections', 'healthcareisselfcare', 'healthcarecity', 'medicare', 'medicareforall', 'medicarepatients', 'medicare4all', 'medicaretreatment', 'medicareclinic', 'medicarechiropractor', 'medicarechiropractic', 'medicareaccepted', 'medicarevannuys', 'medicareaustralia', 'medicarehospital', 'medicareadvantage', 'medicarepharmacy', 'medicaresupplements', 'medicaid', 'medicaidcf', 'medicaidaccepted', 'medicaidplanning', 'medicaidreimbursement', 'medicaid4all', 'medicaidcancerfoundation', 'medicaidcancersummit', 'medicaidmess']
lgbtSentiments = [0]
lgbtKeywords = ['gay', 'lesbian', 'bisexual', 'transexual', 'lgbt', 'lgbtq', 'lgbtpride', 'lgbtcommunity', 'lgbtqia', 'lgbtqa', 'lgbtsupport', 'lgbtyouth', 'lgbtrights', 'lgbtpage', 'lgbtplus', 'lgbti', 'lgbtqpride', 'lgbttextposts', 'lgbtqiapd', 'lgbtlove', 'lgbtteens', 'lgbtfamily', 'lgbtequality', 'lgbtqi', 'lgbtaccount', 'lgbttravel', 'lgbtqcommunity', 'lgbta', 'lgbtposts', 'lgbtsupporter', 'lgbtqapride', 'lgbtqtravelers', 'lgbtqsupport', 'lgbtiq', 'lgbtqplus', 'lgbtqrights', 'lgbtteen', 'lgbtmemes', 'lgbtqiap', 'lgbtqap', 'lgbtcouple', 'lgbtsafezone', 'lgbtart', 'lgbtartist', 'lgbtwedding', 'lgbtqyouth', 'lgbthistory', 'lgbtsafe', 'lgbtproud', 'lgbthumor', 'lgbtsaga', 'lgbteens', 'lgbtmotivate', 'lgbthelp', 'lgbtlife', 'lgbtqiaplus', 'lgbtqlove', 'lgbtsafeplace', 'lgbttextpost', 'lgbtfilm', 'lgbtpride2017', 'lgbts', 'lgbtfiction', 'lgbtqai', 'lgbtatl', 'lgbtaq', 'lgbtqcute', 'lgbtqart', 'lgbtactivist', 'lgbtkids', 'lgbtfriendly', 'lgbtfamilies', 'lgbtqapd', 'lgbthistorymonth', 'lgbtitalia', 'lgbtqteens', 'lgbtuk', 'lgbtartists', 'lgbtqfilm', 'lgbtcouples', 'lgbtqtravel', 'lgbtally', 'lgbtparents', 'lgbtbooks', 'lgbtshoutout', 'lgbtunderground', 'lgbttravelers', 'lgbtweddings', 'lgbthiphop', 'lgbtquotes', 'lgbttumblr', 'lgbtacceptance', 'lgbtqpage', 'lgbtqfamily', 'lgbtt', 'lgbtnightlife', 'lgbtfobia', 'lgbtbusiness', 'lgbtgoals', 'lgbtworld', 'lgbtpoc', 'lgbtpoetry', 'lgbtqartist', 'lgbttravels', 'lgbtia', 'lgbtrightsarehumanrights', 'lgbtmusic', 'lgbtour', 'lgbtqaccount', 'lgbtsafespace', 'lgbtpost', 'lgbtturkey', 'lgbtpridemonth', 'lgbtqiapride', 'lgbtfitness', 'lgbtnews', 'lgbtnation', 'lgbtiqa', 'lgbtqpiad', 'lgbtadventure', 'lgbtflag', 'lgbtteenpage', 'lgbtbarber', 'lgbtbar', 'lgbtpower', 'lgbtyoutubers', 'lgbtsquad', 'lgbtqfashion', 'lgbtqwedding', 'lgbtqp', 'lgbttti', 'lgbtindia', 'lgbtqiacommunity', 'lgbtpodcast', 'lgbthomeless', 'lgbtselfie', 'lgbtforever', 'lgbtqatlanta', 'lgbtkickedout', 'lgbtqaplus', 'lgbtcameroon', 'lgbtcards', 'lgbtfit', 'lgbtqaip', 'lgbtgay', 'lgbtunited', 'lgbtcharacter', 'lgbtqsaga', 'lgbtgroup', 'lgbtpro', 'lgbtyoutuber', 'lgbtarg', 'lgbtpluspride', 'lgbtphotographer', 'lgbtqq', 'lgbtqfriendly', 'lgbtqhomeless', 'lgbtqhubcameroon', 'lgbtoc', 'lgbtcosplayer', 'lgbtrussia', 'lgbtpoet', 'lgbtpositivity', 'lgbtmodel', 'lgbtbrasil', 'lgbtqpia', 'lgbtbali', 'lgbtbabes', 'lgbtsociedade', 'lgbtitaly', 'lgbtqnightlife', 'lgbtspain', 'lgbtsouthafrica', 'lgbtspectrum', 'lgbtinstagram', 'lgbtqteen', 'lgbtqacommunity', 'lgbtqbosses', 'lgbtprom', 'lgbtqqiaa', 'lgbtp', 'lgbtnj', 'lgbtrp', 'lgbtmodels']
environmentSentiments = [0]
environmentKeywords = ['environment', 'environmental', 'environmentallyfriendly', 'environmentalist', 'environmentalism', 'environmentalscience', 'environments', 'environmentaleducation', 'environmentalart', 'environmentfriendly', 'environmentalportrait', 'environmentdesign', 'environmentart', 'environmentalfriendly', 'environmentalprotection', 'environmentalawareness', 'environmentaljustice', 'environmentalhealth', 'environmentally', 'environmentaldesign', 'environmentalengineering', 'environmentalsustainability', 'environmentalstudies', 'environmentallyconscious', 'environmentalpolicy', 'environmentalyfriendly', 'environmentartist', 'environmentallaw', 'environmentalists', 'environmentalissues', 'environmentalgraphics', 'environmentalmanagement', 'environmentaspolitics', 'environmentalactivism', 'environmentphotography', 'environmentalconservation', 'environmentallysafe', 'environmentprotection', 'environmentalprotectionagency', 'environmentalproblems', 'environmentalwellbeing', 'environmentalhumanities', 'environmentalillness', 'environmentalphotography', 'environmentalethics', 'environmentalchange', 'environmentaldestruction', 'environmentalclub', 'environmentaltoxins', 'environmentalimpact', 'environmentalterrorism', 'environmentday', 'environmentalplanning', 'environmentalportraiture', 'environmentalportraits', 'environmentalstewardship', 'environmentallyconcious', 'environmentconflictday', 'environmentalartist', 'environmentalartists', 'environmentminister', 'environmentlyfriendly', 'environmentalday', 'environmentalbranding', 'environmentalcare', 'environmentalcollective', 'environmentalfilm', 'environmentallyfriendlyprinting', 'environmentalgraphicdesign', 'environmentportrait', 'environmentalsociology', 'environmentalservices', 'environmentalsensitivity', 'environmentalradiation', 'environmentalremediation', 'environmentalrentalservices', 'environmentalyfriendlymemes', 'environmentalsensitivities', 'environmentalsciences', 'environmentalresponsibility', 'environmentstudy', 'environmentsarebeingdestroyed', 'environmentalsciencerules', 'environmentmeetshealth', 'environmentalstandards', 'environmentmatters', 'environmentdrawing', 'environmentaltransformation', 'environmentcontrolofwisconsin', 'environmentalstudy', 'environmentalurbanexercises', 'environmentalyconcious', 'environmentawareness', 'environmentandpublicworks', 'environmentaltoothbrush', 'environmentfriendlyproducts', 'environmentgirl', 'environmentalstudiesmajor', 'environmently', 'environmentissues', 'environmentialartificialgrass', 'environmentfurniture', 'environmentaltech', 'environmentfriendy', 'environmentalvirtueethics', 'environmentalaction', 'environmentaled', 'environmentaleducationiscool', 'environmentalenrichment', 'environmentalentrepreneurs', 'environmentalessences', 'environmentalexposure', 'environmentalfilmfestival', 'environmentalfolkart', 'environmentalfootprint', 'environmentalfriendlyart', 'environmentalfriendlyfashion', 'environmentalgood', 'environmentaldisaster', 'environmentaldegradation', 'environmentalallergies', 'environmentalarchitecture', 'environmentalartanddesign', 'environmentalartenvironmentalartanddesignenvironmentalartist', 'environmentalawarness', 'environmentalbiology', 'environmentalcertification', 'environmentalchemistforlife', 'environmentalconservationorganization', 'environmentalconservationstudent', 'environmentalconsulting', 'environmentaldata', 'environmentalgrowthmovement', 'environmentalhealthmatters', 'environmentallysustainable', 'environmentallytrendy', 'environmentalmetal', 'environmentalmonitoring', 'environmentalpark', 'environmentalpolitics', 'environmentalpollution', 'environmentalproducts', 'environmentalinjustice', 'environmentalpsychology', 'environmentalquality', 'environmentalquotes', 'environmentallysafecleaning', 'environmentallyresponsible', 'environmentalhealthstudent', 'environmentalheroes', 'environmentalimpactassessment', 'environmentalinitiatives', 'environmentalistdog', 'environmentalkids', 'environmentallearningcenter', 'environmentallifestyle', 'environmentalliteracy', 'environmentallycleangloves', 'environmentallyfriendlyjewelry', 'environmentallyfriendlyproducts', 'environmentalracism', 'globalwarming', 'globalwarmingisreal', 'globalwarmingawareness', 'globalwarmingfashion', 'globalwarmingsolving', 'globalwarmingriders', 'globalwarmingproblems', 'globalwarmingmum', 'globalwarmingishere', 'globalwarmingishappening', 'globalwarmingisahoax', 'globalwarminghoax', 'globalwarmingedition', 'globalwarmingdenial', 'globalwarmingsucks']
welfareSentiments = [0]
welfareKeywords = ['welfare', 'welfarerichent', 'welfarerich', 'welfarestate', 'welfaresystem', 'welfaretowork', 'welfareprojectsrl', 'welfareproject', 'welfareorganizations', 'welfareofchildren', 'welfarefirst', 'welfarecadillac', 'welfarebeerleague', 'welfarebear', 'welfarewagon']
socialSentiments = [0]
socialKeywords = ['socialsecurity', 'socialsecuritybenefits', 'socialsecuritynumber', 'socialsecurityadministration', 'socialsecuritycard', 'socialprogram']
laborunionSentiments = [0]
laborunionKeywords = ['laborunion', 'laborunions', 'laborrights', 'aborights', 'workerrights', 'workerights']
drugsSentiments = [0]
drugsKeywords = ['drugs', 'drugstore', 'drugstoremakeup', 'drugsarebad', 'drugstorebeauty', 'drugstorehaul', 'drugsforlove', 'drugstorecosmetics', 'drugsclothing', 'drugscity', 'drugsfree', 'drugsarebadmkay', 'drugstoreproducts', 'drugskill', 'drugsrp', 'drugsandalcohol', 'drugsdontwork', 'drugsjonas', 'drugstorenews', 'drugslutfollowtrain', 'drugsong', 'drugsarentcool', 'drugstoreskincare', 'drugsrehab', 'drugstoreglam', 'drugstorefoundation', 'drugsinmybody', 'drugsandway', 'drugsandsongs', 'drugstorefinds', 'drugstorewhore', 'drugsoflove', 'drugstorebrand', 'drugstoredupe', 'drugsrecovery', 'drugstoreshenanigans', 'drugscreening', 'drugsformugs', 'drugstores', 'drugsandmoney', 'drugsareoldnews', 'drugscenery', 'drugsarebadmmmkay', 'drugstoreessentials', 'drugstoremakeuplook', 'drugstorenude', 'drugstorebrands', 'drugstorebrushes', 'drugstorehk', 'drugstorebeat', 'drugsynthesis', 'drugsyoushouldtryit', 'drugstoo', 'drugstohell', 'drugstorecl', 'drugstorepallete', 'drugstorelook', 'drugstoreflatlay', 'drugstoremake', 'drugstorelipstick', 'drugstoreproduct', 'drugstorefind', 'drugswontbreakyourheart', 'drugstoredupes', 'drugswork', 'drugstoredeals', 'drugsxo', 'drugstest', 'drugstar', 'drugsabuse', 'drugsareforlosers', 'drugsaregood', 'drugsaretotallybadandall', 'drugsbandana', 'drugsbeforehoes', 'drugscam', 'drugscammer', 'drugscityfans', 'drugsarebetter', 'drugsarebadmmkay', 'drugsaesthetic', 'drugsafety', 'drugsandattics', 'drugsanddeli', 'drugsandhugs', 'drugsandwomen', 'drugsarebadforyoukids', 'drugsarebadkids', 'drugsforsale', 'drugsgta', 'drugshond', 'drugsonly', 'drugsontheway', 'drugsoutof10', 'drugspouch', 'drugsrockandroll', 'drugsruinfamilies', 'drugsruinlives', 'drugssexandhousemusic', 'drugsindenjeans', 'drugsof1ove', 'drugshots', 'drugsinc', 'drugslife', 'drugslove', 'drugslutgainplane', 'drugsmugglinsince09', 'drugsnhiphop', 'drugsniffingdog', 'drugssexandrocknroll']
warSentiments = [0]
warKeywords = ['war', 'iraqwar', 'afghanistanwar', 'afghanistan', 'iraq']
#(nameOfTuple, sentimentList, keywordList)
personSentimentList = [
('Hillary', hillarySentiments, hillaryKeywords),
('Trump', trumpSentiments, trumpKeywords),
('Cruz', cruzSentiments, cruzKeywords),
('Bernie', bernieSentiments, bernieKeywords),
('Obama', obamaSentiments, obamaKeywords)]
issueSentimentList = [
('Guns', gunsSentiments, gunsKeywords),
('Immigration', immigrationSentiments, immigrationKeywords),
('Employment', employmentSentiments, employmentKeywords),
('Inflation', inflationSentiments, inflationKeywords),
('Minimum wage up', minimumwageupSentiments, minimumwageupKeywords),
('Abortion', abortionSentiments, abortionKeywords),
('Government spending', governmentspendingSentiments, governmentspendingKeywords),
('Taxes up', taxesupSentiments, taxesupKeywords),
('Taxes down', taxesdownSentiments, taxesdownKeywords),
('Death penalty', deathpenaltySentiments, deathpenaltyKeywords),
('Health care', healthcareSentiments, healthcareKeywords),
('LGBT', lgbtSentiments, lgbtKeywords),
('Environment', environmentSentiments, environmentKeywords),
('Welfare', welfareSentiments, welfareKeywords),
('Social', socialSentiments, socialKeywords),
('Labor Union', laborunionSentiments, laborunionKeywords),
('Drugs', drugsSentiments, drugsKeywords),
('War', warSentiments, warKeywords),
]
MENTIONS = 0
try:
for tweet in data['Tweets']:
stweet = tweet.replace(" ", "")
for person in personSentimentList:
for keyword in person[2]:
if keyword in stweet:
tb = textblob.TextBlob(data_preparation(tweet))
person[1].append(tb.sentiment.polarity)
MENTIONS += 1
break
for issue in issueSentimentList:
for keyword in issue[2]:
if keyword in stweet:
tb = textblob.TextBlob(data_preparation(tweet))
issue[1].append(tb.sentiment.polarity)
MENTIONS += 1
break
except:
print(sys.exc_info()[0])
sys.stdout.flush()
print("\nDetected {} mentions.\n".format(MENTIONS))
hillary = 0 if (len(hillarySentiments) == 1) else reduce(lambda x, y: x + y, hillarySentiments) / float(len(hillarySentiments)-1)
trump = 0 if (len(trumpSentiments) ==1) else reduce(lambda x, y: x + y, trumpSentiments) / float(len(trumpSentiments)-1)
cruz = 0 if (len(cruzSentiments) == 1) else reduce(lambda x, y: x + y, cruzSentiments) / float(len(cruzSentiments)-1)
bernie = 0 if (len(bernieSentiments) == 1) else reduce(lambda x, y: x + y, bernieSentiments) / float(len(bernieSentiments)-1)
obama = 0 if (len(obamaSentiments) == 1) else reduce(lambda x, y: x + y, obamaSentiments) / float(len(obamaSentiments)-1)
republican = 0 if (len(republicanSentiments) == 1) else reduce(lambda x, y: x + y, republicanSentiments) / float(len(republicanSentiments)-1)
democrat = 0 if (len(democratSentiments) == 1) else reduce(lambda x, y: x + y, democratSentiments) / float(len(democratSentiments)-1)
guns = 0 if (len(gunsSentiments) == 1) else reduce(lambda x, y: x + y, gunsSentiments) / float(len(gunsSentiments)-1)
immigration = 0 if (len(immigrationSentiments) == 1) else reduce(lambda x, y: x + y, immigrationSentiments) / float(len(immigrationSentiments)-1)
employment = 0 if (len(employmentSentiments) == 1) else reduce(lambda x, y: x + y, employmentSentiments) / float(len(employmentSentiments)-1)
inflation = 0 if (len(inflationSentiments) == 1) else reduce(lambda x, y: x + y, inflationSentiments) / float(len(inflationSentiments)-1)
wageup = 0 if (len(minimumwageupSentiments) == 1) else reduce(lambda x, y: x + y, minimumwageupSentiments) / float(len(minimumwageupSentiments)-1)
abortion = 0 if (len(abortionSentiments) == 1) else reduce(lambda x, y: x + y, abortionSentiments) / float(len(abortionSentiments)-1)
govspend = 0 if (len(governmentspendingSentiments) == 1) else reduce(lambda x, y: x + y, governmentspendingSentiments) / float(len(governmentspendingSentiments)-1)
taxup = 0 if (len(taxesupSentiments) == 1) else reduce(lambda x, y: x + y, taxesupSentiments) / float(len(taxesupSentiments)-1)
taxdown = 0 if (len(taxesdownSentiments) == 1) else reduce(lambda x, y: x + y, taxesdownSentiments) / float(len(taxesdownSentiments)-1)
deathpenalty = 0 if (len(deathpenaltySentiments) == 1) else reduce(lambda x, y: x + y, deathpenaltySentiments) / float(len(deathpenaltySentiments)-1)
healthcare = 0 if (len(healthcareSentiments) == 1) else reduce(lambda x, y: x + y, healthcareSentiments) / float(len(healthcareSentiments)-1)
lgbt = 0 if (len(lgbtSentiments) == 1) else reduce(lambda x, y: x + y, gaySentiments) / float(len(gaySentiments)-1)
environment = 0 if (len(environmentSentiments) == 1) else reduce(lambda x, y: x + y, environmentSentiments) / float(len(environmentSentiments)-1)
welfare = 0 if (len(welfareSentiments) == 1) else reduce(lambda x, y: x + y, welfareSentiments) / float(len(welfareSentiments)-1)
social = 0 if (len(socialSentiments) == 1) else reduce(lambda x, y: x + y, socialSentiments) / float(len(socialSentiments)-1)
laborunion = 0 if (len(laborunionSentiments) == 1) else reduce(lambda x, y: x + y, laborunionSentiments) / float(len(laborunionSentiments)-1)
drugs = 0 if (len(drugsSentiments) == 1) else reduce(lambda x, y: x + y, drugsSentiments) / float(len(drugsSentiments)-1)
war = 0 if (len(warSentiments) == 1) else reduce(lambda x, y: x + y, warSentiments) / float(len(warSentiments)-1)
print("Hillary sentiment: {}".format(hillary))
print("Trump sentiment: {}".format(trump))
print("Cruz sentiment: {}".format(cruz))
print("Bernie sentiment: {}".format(bernie))
print("Obama sentiment: {}".format(obama))
print("Rpublican sentiment: {}".format(republican))
print("Democrat sentiment: {}".format(democrat))
print("Guns sentiment: {}".format(guns))
print("Immigration sentiment: {}".format(immigration))
print("Employment sentiment: {}".format(employment))
print("Inflation sentiment: {}".format(inflation))
print("Minimum Wage Up sentiment: {}".format(wageup))
print("Abortion sentiment: {}".format(abortion))
print("Govenment Spending sentiment: {}".format(govspend))
print("Taxes Up sentiment: {}".format(taxup))
print("Taxes Down sentiment: {}".format(taxdown))
print('Death penalty sentiment: {}'.format(deathpenalty))
print('Health care sentiment: {}'.format(healthcare))
print('LGBT sentiment: {}'.format(lgbt))
print('Environment sentiment: {}'.format(environment))
print('Welfare sentiment: {}'.format(welfare))
print('Social sentimnt: {}'.format(social))
print('Labor Union sentiment: {}'.format(laborunion))
print('Drugs sentiment: {}'.format(drugs))
print('War sentiment: {}'.format(war))
C1ACC = 0
#C1//FOR
Xdeathpenalty = deathpenalty
if str(immigration) != "0":
C1ACC += 1
Xguns = guns
if str(guns) != "0":
C1ACC += 1
Xtaxup = taxup
if str(taxup) != "0":
C1ACC += 1
Xtaxdown = taxdown
if str(taxdown) != "0":
C1ACC += 1
Xwar = war
if str(war) != "0":
C1ACC += 1
Xgovspend = govspend
if str(govspend) != "0":
C1ACC += 1
#C1//AGAINST
Ximmigration = -(immigration)
if str(immigration) != "0":
C1ACC += 1
Xwageup = -(wageup)
if str(wageup) != "0":
C1ACC += 1
Xdrugs = -(drugs)
if str(drugs) != "0":
C1ACC += 1
Xhealthcare = -(healthcare)
if str(healthcare) != "0":
C1ACC += 1
Xlgbt = -(lgbt)
if str(lgbt) != "0":
C1ACC += 1
Xenvironment = -(environment)
if str(environment) != "0":
C1ACC += 1
Xabortion = -(abortion)
if str(abortion) != "0":
C1ACC += 1
Xwelfare = -(welfare)
if str(welfare) != "0":
C1ACC += 1
Xsocial = -(social)
if str(social) != "0":
C1ACC += 1
Xlaborunion = -(laborunion)
if str(laborunion) != "0":
C1ACC += 1
C1OUT = (Xdeathpenalty + Xguns + Xtaxup + Xtaxdown + Xwar + Xgovspend + Ximmigration + Xwageup + Xdrugs + Xhealthcare + Xlgbt + Xenvironment + Xabortion + Xwelfare + Xsocial + Xlaborunion) / C1ACC
C2ACC = 0
#C2//FOR
Ydrugs = drugs
if str(drugs) != "0":
C2ACC += 1
Yabortion = abortion
if str(abortion) != "0":
C2ACC += 1
Ylgbt = lgbt
if str(lgbt) != "0":
C2ACC += 1
Yimmigration = immigration
if str(immigration) != "0":
C2ACC += 1
Ywageup = wageup
if str(wageup) != "0":
C2ACC += 1
Ytaxdown = taxdown
if str(taxdown) != "0":
C2ACC += 1
Yenvironment = environment
if str(environment) != "0":
C2ACC += 1
Ysocial = social
if str(social) != "0":
C2ACC += 1
Ylaborunion = laborunion
if str(laborunion) != "0":
C2ACC += 1
#C2//AGAINST
Yguns = -(guns)
if str(guns) != "0":
C2ACC += 1
Ytaxup = -(taxup)
if str(taxup) != "0":
C2ACC += 1
Ydeathpenalty = -(deathpenalty)
if str(deathpenalty) != "0":
C2ACC += 1
Ywar = -(war)
if str(war) != "0":
C2ACC += 1
Yhealthcare = -(healthcare)
if str(healthcare) != "0":
C2ACC += 1
Ywelfare = -(welfare)
if str(welfare) != "0":
C2ACC += 1
Ygovspend = -(govspend)
if str(govspend) != "0":
C2ACC += 1
C2OUT = (Ydrugs + Yabortion + Ylgbt + Yimmigration + Ywageup + Ytaxdown + Yenvironment + Ysocial + Ylaborunion + Yguns + Ytaxup + Ydeathpenalty + Ywar + Yhealthcare + Ywelfare + Ygovspend) / C2ACC
#use mode then median instead
OBJ = (len(obj_tweets)*10/len(data['Tweets']))
img = plt.imread("Nolan_chart_normal.png")
fig, ax = plt.subplots()
divider = make_axes_locatable(ax)
ax.imshow(img, extent=[-1, 1, -1, 1])
scatters = plt.scatter(C1OUT, C2OUT, c=OBJ, cmap='RdYlGn', vmin=0, vmax=1)
plt.gca().axes.get_yaxis().set_visible(False)
plt.gca().axes.get_xaxis().set_visible(False)
cax = divider.append_axes("right", size="5%", pad=0.2) #pad = separation, size = width
plt.colorbar(scatters, cax=cax, ticks=[0, 1]).ax.set_yticklabels(['Subjective', 'Objective'])
if C1OUT > 0:
bias = "right"
elif C1OUT < 0:
bias = "left"
return bias
def send_pro_vote_propaganda(target):
pass
def send_pro_protest_propaganda(target):
pass
if __name__ == "__main__":
banner()
parsein()
benefit = BENEFIT
num = int(NUM) if NUM != None else None
targets = TARGETS
for target in targets:
url = 'https://www.twitter.com/' + target
r = requests.get(url)
soup = BeautifulSoup(r.content, "lxml")
f = soup.find('li', class_="ProfileNav-item--followers").find('a')['title'] or ""
num_followers = int(f.split(' ')[0].replace(',','').replace('.', ''))
location = " ".join((soup.find('span', {'class': 'ProfileHeaderCard-locationText u-dir'}).text.replace('\n', '') or "").split())
print("[*] Target: {} ({}) {} followers".format(target, location, num_followers))
print("[*] Benefit %s wing" % benefit)
print("[*] Collecting ~{} Tweets\n\n".format(num if num != None else 'all'))
orientation = main(target, num);
print("\n\n")
if orientation == benefit:
print("[*]Action: Send Pro-Vote Propaganda")
send_pro_vote_propaganda(target)
else:
print("[*]Action: Send Pro-Blank Propaganda.")
send_pro_protest_propaganda(target)
plt.show() #TODO: DYNAMIC PLOTTING
"""
with open('train.json', 'r') as fp:
cl = NaiveBayesClassifier(fp, format="json")
cl.classify("Very damm positive sentence")
prob_dist = cl.prob_classify("This one's a doozy.")
prob_dist.max()
round(prob_dist.prob("pos"), 2)
round(prob_dist.prob("neg"), 2)
from textblob import TextBlob
blob = TextBlob("The beer is good. But the hangover is horrible.", classifier=cl)
blob.classify()
for s in blob.sentences:
print(s)
print(s.classify())
cl.accuracy(test)
cl.show_informative_features(5)
new_data = [('She is my best friend.', 'pos'),
("I'm happy to have a new friend.", 'pos'),
("Stay thirsty, my friend.", 'pos'),
("He ain't from around here.", 'neg')]
cl.update(new_data)
cl.accuracy(test)
"""
"""
username='POTUS'
url = 'https://www.twitter.com/' + username
r = requests.get(url)
soup = BeautifulSoup(r.content, "lxml")
f = soup.find('li', class_="ProfileNav-item--followers").find('a')['title'] or ""
num_followers = int(f.split(' ')[0].replace(',','').replace('.', ''))
location = " ".join((soup.find('span', {'class': 'ProfileHeaderCard-locationText u-dir'}).text.replace('\n', '') or "").split())
print(location)
print(num_followers)
"""
"""
conn = sqlite3.connect('twitter_testing.sqlite')
cur = conn.cursor()
cur.executescript('''
CREATE TABLE Tweets_London (
id INTEGER NOT NULL PRIMARY KEY AUTOINCREMENT UNIQUE,
user_id TEXT,
user_name TEXT,
user_timezone TEXT,
user_language TEXT,
detected_language TEXT,
tweet_text TEXT,
tweet_created TEXT
)
''')
for tweet in tweets:
detected = detect(tweet.text)
cur.execute('''INSERT OR IGNORE INTO Tweets_GeoPLACE (
user_id, user_name, user_timezone, user_language, detected_language, tweet_text, tweet_created
)
VALUES ( ?,?,?,?,?,?,? )''', (tweet.user.id,tweet.user.screen_name,tweet.user.time_zone,tweet.user.lang,detected,tweet.text,tweet.created_at))
conn.commit()
from_sql = pd.read_sql_query("SELECT * FROM Tweets_GeoPLACE;", conn)
print(from_sql)
"""
"""
mean = np.mean(data['len'])
fav_max = np.max(data['Likes'])
rt_max = np.max(data['RTs'])
fav = data[data.Likes == fav_max].index[0]
rt = data[data.RTs == rt_max].index[0]
# Max FAVs:
print("\nAverage tweet length: {}".format(mean))
print("The tweet with more likes is: \n{}".format(data['Tweets'][fav]))
print("Number of likes: {}".format(fav_max))
print("{} characters.\n".format(data['len'][fav]))
# Max RTs:
print("The tweet with more retweets is: \n{}".format(data['Tweets'][rt]))
print("Number of retweets: {}".format(rt_max))
print("{} characters.\n".format(data['len'][rt]))
# create time series for data:
tlen = pd.Series(data=data['len'].values, index=data['Date'])
tfav = pd.Series(data=data['Likes'].values, index=data['Date'])
tret = pd.Series(data=data['RTs'].values, index=data['Date'])
#tlen.plot(figsize=(16,4), color='r');
#tlen.show()
plt.plot(tfav, color='r')
plt.plot(tfav, label="Likes", tret, label="Reweets", legend=True)
plt.show()
"""
#NOLAN CHART DERIVATION
#Component 1 (X) Right hand edge of the plot.
"""
for:
death penalty
against:
National Health Care
Gay Marriage
Global Warming Exists
Abortion
Welfare
Social Programs
Medicaid & Medicare
Environmental Protection
Labor Union
"""
#component 2 (Y) Top edge of the plot.
"""
for:
Drug Legalization
Medical Marijuana
Abortion
Gay Marriage
against:
War on Terror
Social Security
War in Afghanistan
Medicaid & Medicare
Social Programs
Welfare.
The conventional ideological buckets these positions fall into are social liberalism, fiscal conservatism, and opposition to foreign intervention- the primary features of libertarianism.
"""