-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathexp-acts-ft-finetune-OpenAI-CLIP-ViT-L-14-GmP-manipulate-neurons.py
504 lines (408 loc) · 21.2 KB
/
exp-acts-ft-finetune-OpenAI-CLIP-ViT-L-14-GmP-manipulate-neurons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import os
import json
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision.io import read_image
from PIL import Image
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from torch.optim.lr_scheduler import ReduceLROnPlateau
import torch.nn.functional as F
from sklearn.metrics import f1_score, accuracy_score
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
import gmpclip as clip
from torch.optim import AdamW
from torch.optim.lr_scheduler import OneCycleLR
import random
from colorama import Fore, Style
from tqdm import tqdm
from adabelief_pytorch import AdaBelief
from torch.nn.utils import clip_grad_norm_
training_losses = []
validation_losses = []
print("\n")
# Save training plots with matplotlib to:
plots_folder = 'ft-plots'
os.makedirs(plots_folder, exist_ok=True)
# Save model .pt files to:
ft_checkpoints_folder = 'ft-checkpoints'
os.makedirs(ft_checkpoints_folder, exist_ok=True)
# Save verbose text / training logs to:
text_logs_folder = 'ft-logs'
os.makedirs(text_logs_folder, exist_ok=True)
# Model Saving Options; the default is 'legacy behavior' (only save full model, save as GmP)
save_full = True # Save full model object
save_dict = False # Save state_dict
save_jit = False # Save as JIT-traced model
save_as_gmp = True # True for saving in GmP format with .theta, .r; False for converting back to .weight (original OpenAI/CLIP)
def convert_back_to_original(state_dict):
new_state_dict = {}
for key, value in state_dict.items():
if key.endswith(".theta"):
base_key = key.replace(".theta", "")
r_key = base_key + ".r"
new_weight = state_dict[r_key] * F.normalize(value, p=2, dim=1)
new_state_dict[base_key + ".weight"] = new_weight
elif key.endswith(".r") or key.endswith(".theta"):
continue # Skip the .r and .theta keys
else:
new_state_dict[key] = value
return new_state_dict
class GmPconverter:
@staticmethod
def convert_model(modelft):
modelft = model
# Extract parameters from the fine-tuned model
config = {
'embed_dim': modelft.text_projection.shape[1],
'image_resolution': modelft.visual.input_resolution,
'vision_layers': modelft.visual.transformer.layers,
'vision_width': modelft.visual.conv1.out_channels,
'vision_patch_size': modelft.visual.conv1.kernel_size[0],
'context_length': modelft.context_length,
'vocab_size': modelft.vocab_size,
'transformer_width': modelft.transformer.width,
'transformer_heads': modelft.transformer.resblocks[0].attn.num_heads,
'transformer_layers': modelft.transformer.layers
}
# Convert state_dict to original CLIP format
fine_tuned_state_dict = modelft.state_dict()
original_state_dict = convert_back_to_original(fine_tuned_state_dict)
from clip.model import CLIP
# Instantiate the original model
original_model = CLIP(**config)
original_model.load_state_dict(original_state_dict)
return original_model
def ModelSaver(model, epoch, save_as_gmp=False):
model_to_save = model
if not save_as_gmp:
model_to_save = GmPconverter.convert_model(model)
model_to_save.to(device)
# File suffix based on save format
suffix = 'as-gmp' if save_as_gmp else 'as-weight'
# Save full model object if enabled
if save_full:
torch.save(model_to_save, f'{ft_checkpoints_folder}/clip_ft_{epoch+1}_full_{suffix}.pt')
# Save state_dict if enabled
if save_dict:
torch.save(model_to_save.state_dict(), f'{ft_checkpoints_folder}/clip_ft_{epoch+1}_dict_{suffix}.pt')
# Save as JIT-traced model if enabled
if save_jit:
sample_data = next(iter(val_dataloader))
images, texts = sample_data # Unpack directly if sample_data is a tuple (images, texts)
images, texts = images[:2], texts[:2]
images, texts = images.to(device), texts.to(device)
model_to_save.eval() # Set to evaluation mode for tracing
script_model = torch.jit.trace(model_to_save, (images, texts))
script_model.save(f'{ft_checkpoints_folder}/clip_ft_{epoch+1}_jit_{suffix}.pt')
del model_to_save
def adjust_unfreeze_rate(epoch, adjust_after=12, increase_rate=2):
if epoch < adjust_after:
return 1 # Initial slower unfreeze rate
else:
return increase_rate # Increased rate after initial pass
def unfreeze_layers(model, epoch, total_layers=24, unfreeze_all=False):
if unfreeze_all:
for param in model.parameters():
param.requires_grad = True
else:
unfreeze_every_n_epochs = adjust_unfreeze_rate(epoch)
layers_to_unfreeze = (epoch // unfreeze_every_n_epochs) % total_layers
layers_to_unfreeze = min(layers_to_unfreeze, total_layers)
for i, (name, param) in enumerate(model.named_parameters()):
if i >= total_layers - layers_to_unfreeze:
param.requires_grad = True
else:
param.requires_grad = False
def monitor_gradient_norms(gradient_norms, threshold=1e-5):
alert_messages = []
for name, norms in gradient_norms.items():
mean_norm = sum(norms) / len(norms)
if mean_norm < threshold: # Vanishing gradient
alert_messages.append(Fore.RED + f"Vanishing gradient detected in {name} with mean norm {mean_norm:.2e}" + Style.RESET_ALL)
elif mean_norm > 1000: # Exploding gradient
alert_messages.append(Fore.RED + f"Exploding gradient detected in {name} with mean norm {mean_norm:.2e}" + Style.RESET_ALL)
if alert_messages:
for message in alert_messages:
print(message)
# Optionally, you could also implement some automatic adjustment strategies here
def plot_gradient_norms(gradient_norms, epoch, use_log_scale=True):
plt.figure(figsize=(20, 10))
# Choose a colormap
cmap = plt.get_cmap('Spectral')
# Sort the layers by the maximum gradient norm value, descending
sorted_layers = sorted(gradient_norms.items(), key=lambda item: max(item[1]), reverse=True)
# Generate distinct colors from the colormap
colors = cmap(range(len(sorted_layers)))
for (layer_name, norms), color in zip(sorted_layers, colors):
plt.plot(norms, label=layer_name, color=color)
plt.xlabel('Batch')
plt.ylabel('Gradient Norm')
# Adjust legend: position at top right with smaller font size
plt.legend(loc='upper right', fontsize='small')
if use_log_scale:
plt.yscale('log')
plt.title(f'Gradient Norms for Epoch {epoch}{" - Log Scale" if use_log_scale else ""}')
plt.savefig(f"{plots_folder}/gradient_norms_epoch_{epoch}_log.png")
else:
plt.savefig(f"{plots_folder}/gradient_norms_epoch_{epoch}.png")
plt.close()
def plot_training_info(epoch, training_losses, validation_losses, logits_images, logits_texts):
epochs_x = range(1, epoch + 2)
plt.figure(figsize=(12, 8))
plt.subplot(2, 1, 1)
if len(training_losses) == len(epochs_x):
plt.plot(epochs_x, training_losses, label='Training Loss')
if len(validation_losses) == len(epochs_x):
plt.plot(epochs_x, validation_losses, label='Validation Loss')
plt.title('Loss Over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.subplot(2, 1, 2)
if len(logits_images) == len(epochs_x):
plt.plot(epochs_x, logits_images, label='Average Logits')
if len(logits_texts) == len(epochs_x):
plt.plot(epochs_x, logits_texts, label='Average Logits')
plt.title('Average Logits Over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Logits')
plt.legend()
plt.tight_layout()
plt.savefig(f"{plots_folder}/combined_plot_epoch_{epoch + 1}.png")
plt.close()
def calculate_metrics(logits, ground_truth):
preds = torch.argmax(logits, dim=1)
acc = accuracy_score(ground_truth.cpu(), preds.cpu())
f1 = f1_score(ground_truth.cpu(), preds.cpu(), average='weighted')
return acc, f1
class ImageTextDataset(Dataset):
def __init__(self, image_folder, annotations_file, transform=None):
self.image_folder = image_folder
self.transform = transform
with open(annotations_file, 'r') as f:
self.annotations = json.load(f)
self.image_paths = list(self.annotations.keys())
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image_path = os.path.join(self.image_folder, self.image_paths[idx])
image = Image.open(image_path).convert('RGB') # Convert to RGB
if self.transform:
image = self.transform(image)
labels = self.annotations[self.image_paths[idx]]
if len(labels) >= 2:
label = random.choice([labels[0], labels[1]])
elif labels:
label = labels[0] # Fallback to the first label if less than 2 are available
else:
label = '' # Fallback if no labels are available
text = clip.tokenize([label]) # Tokenize the label
return image, text.squeeze(0) # Remove the extra dimension
class ContrastiveLoss(nn.Module):
def __init__(self, temperature=0.07):
super(ContrastiveLoss, self).__init__()
self.temperature = temperature
self.criterion = nn.CrossEntropyLoss()
def forward(self, logits_per_image, logits_per_text):
# Normalize the features to avoid overflow or underflow
logits_per_image = F.normalize(logits_per_image, p=2, dim=1)
logits_per_text = F.normalize(logits_per_text, p=2, dim=1)
# Calculate logits
logits = torch.matmul(logits_per_image, logits_per_text.t()) / self.temperature
labels = torch.arange(logits.size(0), device=logits.device)
# Calculate loss as the mean of the two cross-entropy losses
loss_img = self.criterion(logits, labels)
loss_txt = self.criterion(logits.t(), labels)
return (loss_img + loss_txt) / 2
# Custom hook to scale the feature activation
class FeatureScalerHook:
def __init__(self, model, layer_idx, feature_indices, scale_factor):
self.model = model
self.layer_idx = layer_idx
self.feature_indices = feature_indices
self.scale_factor = scale_factor
self.handle = None
self.register_hook()
def hook_fn(self, module, input, output):
for feature_idx in self.feature_indices:
output[:, :, feature_idx] *= self.scale_factor
return output
def register_hook(self):
layer = self.model.visual.transformer.resblocks[self.layer_idx].mlp.c_fc
self.handle = layer.register_forward_hook(self.hook_fn)
def remove(self):
if self.handle:
self.handle.remove()
def register_hooks(model, modified_neurons_layers, scale_factors):
hooks = []
for layer_idx, feature_indices in modified_neurons_layers.items():
scale_factor = scale_factors[layer_idx]
hook = FeatureScalerHook(model, layer_idx, feature_indices, scale_factor)
hooks.append(hook)
return hooks
def remove_hooks(hooks):
for hook in hooks:
hook.remove()
# Define the neurons to tamper with, and scaling factors for each layer
# Penultimate layer 22, Feature 2432 is an "adverb neuron".
# When scaled to x1000, CLIP will predict mainly adverbs for any image.
# See https://github.com/zer0int/Golden-Gate-CLIP for details
modified_neurons_layers = {
23: [281],
20: [168, 1297],
22: [2432]
}
scale_factors = {
23: 100,
20: 100,
22: 1000
}
contrastive_loss = ContrastiveLoss(temperature=0.07)
from torch.cuda.amp import autocast, GradScaler
scaler = GradScaler()
clipmodel = 'ViT-L/14'
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load(clipmodel, device=device)
#For continuing training a model checkpoint
#_, preprocess = clip.load(clipmodel, device=device)
#model = torch.load("continue/training/my/finetune.pt")
#model = model.cuda()
unfreeze_all = True
EPOCHS = 20
max_learning_rate = 5e-7
learning_rate = 3e-7
batch_size = 40
# Define your training dataset and dataloader, or use below to reproduce results
dataset1 = ImageTextDataset("path/to/images/COCO/data-square", "path/to/COCO/data-square/short-coco-sprite-train-0_9.json", transform=preprocess)
concatenated_dataset = ConcatDataset([dataset1]) # Add more datasets to this list as needed ([dataset1, dataset2])
train_dataloader = DataLoader(concatenated_dataset, batch_size=batch_size, shuffle=True)
# Validation dataset and dataloader
val_dataset = ImageTextDataset("path/to/images/COCO/data-square", "path/to/COCO/data-square/short-coco-sprite-val-10_11.json", transform=preprocess)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
total_steps = len(train_dataloader) * EPOCHS
# Define parameter groups for different learning rates
visual_parameters = [p for p in model.visual.transformer.parameters() if p.requires_grad]
transformer_parameters = [p for p in model.transformer.parameters() if p.requires_grad]
# Taming CLIP after we modify its weights in such a radical way, with differential learning rates
param_groups = [
{'params': visual_parameters, 'lr': 3e-7},
{'params': transformer_parameters, 'lr': 1e-8},
{'params': model.token_embedding.parameters(), 'lr': 3e-7},
{'params': [model.positional_embedding, model.visual.positional_embedding, model.visual.class_embedding], 'lr': 1e-7},
{'params': [model.visual.proj, model.text_projection], 'lr': 1e-7},
{'params': [model.visual.ln_pre.weight, model.visual.ln_pre.bias, model.visual.ln_post.weight, model.visual.ln_post.bias], 'lr': 1e-7}, # Delicate linear layers
{'params': [model.ln_final.weight, model.ln_final.bias, model.visual.conv1.weight], 'lr': 1e-7} # Further reduce learning rate for problematic layers
]
accumulation_steps = 2 # Effective batch size will be batch_size * accumulation_steps
optimizer = AdaBelief(param_groups, lr=learning_rate, eps=1e-14, betas=(0.9, 0.999), weight_decay=1e-3, weight_decouple=True, rectify=True, print_change_log=False)
scheduler = OneCycleLR(optimizer, max_lr=max_learning_rate, total_steps=total_steps, pct_start=0.3, anneal_strategy='cos')
model = model.float()
print(f"Precision: {model.dtype}")
print(f'Total batches: {len(train_dataloader)} @ Batch Size: {batch_size}')
print("== START == \n")
def trainloop():
contrastive_loss = ContrastiveLoss(temperature=0.07).to(device)
logits_images = []
logits_texts = []
accumulation_steps = 2 # Adjust as needed to simulate larger batch size
scaler = GradScaler()
# Register hooks to tamper with activation value
hooks = register_hooks(model, modified_neurons_layers, scale_factors)
for epoch in range(EPOCHS):
gradient_norms = {}
unfreeze_layers(model, epoch, total_layers=24, unfreeze_all=unfreeze_all)
model.train()
total_train_loss = 0.0
train_accs, train_f1s, val_accs, val_f1s = [], [], [], []
train_dataloader_prog = train_dataloader
train_dataloader_all = train_dataloader
progress_bar = tqdm(enumerate(train_dataloader), total=len(train_dataloader), desc=f'Epoch {epoch + 1}/{EPOCHS}', leave=True)
optimizer.zero_grad() # Reset gradients at the beginning of the epoch
for batch_idx, (images, texts) in progress_bar:
images, texts = images.to(device), texts.to(device)
batch_logits_images = []
batch_logits_texts = []
with autocast():
logits_per_image, logits_per_text = model(images, texts)
current_batch_size = images.size(0)
ground_truth = torch.arange(current_batch_size, device=device)
total_loss = contrastive_loss(logits_per_image, logits_per_text)
acc, f1 = calculate_metrics(logits_per_image, ground_truth)
train_accs.append(acc)
train_f1s.append(f1)
scaler.scale(total_loss).backward()
if (batch_idx + 1) % accumulation_steps == 0 or (batch_idx + 1) == len(train_dataloader):
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad() # Reset gradients after optimizer step
scheduler.step()
batch_logits_images.append(logits_per_image.mean().item())
batch_logits_texts.append(logits_per_text.mean().item())
for name, parameter in model.named_parameters():
if parameter.grad is not None:
grad_norm = parameter.grad.norm().item()
gradient_norms.setdefault(name, []).append(grad_norm)
monitor_gradient_norms(gradient_norms)
total_train_loss += total_loss.item()
progress_bar.set_postfix({'loss': f'{total_train_loss / (batch_idx + 1):.4f} -- Logits Image: {batch_logits_images[-1]:.3f}, Text: {batch_logits_texts[-1]:.3f}'})
avg_train_loss = total_train_loss / len(train_dataloader)
training_losses.append(avg_train_loss)
epoch_avg_logits_image = sum(batch_logits_images) / len(batch_logits_images)
epoch_avg_logits_text = sum(batch_logits_texts) / len(batch_logits_texts)
logits_images.append(epoch_avg_logits_image)
logits_texts.append(epoch_avg_logits_text)
plot_gradient_norms(gradient_norms, epoch)
epoch_train_acc = sum(train_accs) / len(train_accs)
epoch_train_f1 = sum(train_f1s) / len(train_f1s)
with open(f"{text_logs_folder}/log_details_train.txt", "a", encoding='utf-8') as f:
f.write(f"Epoch {epoch + 1}/{EPOCHS}, Loss: {avg_train_loss:.4f}, Training Acc: {epoch_train_acc:.4f}, Training F1: {epoch_train_f1:.4f}\n")
model.eval()
total_val_loss = 0.0
print("Running Validation...")
with torch.no_grad():
for images, texts in val_dataloader:
current_batch_size = images.size(0)
ground_truth = torch.arange(current_batch_size, device=device)
images, texts = images.to(device), texts.to(device)
logits_per_image, logits_per_text = model(images, texts)
val_loss = contrastive_loss(logits_per_image, logits_per_text)
total_val_loss += val_loss.item()
val_acc, val_f1 = calculate_metrics(logits_per_image, ground_truth)
val_accs.append(val_acc)
val_f1s.append(val_f1)
avg_val_loss = total_val_loss / len(val_dataloader)
validation_losses.append(avg_val_loss)
if epoch >= 1:
plot_training_info(epoch, training_losses, validation_losses, logits_images, logits_texts)
epoch_val_acc = sum(val_accs) / len(val_accs)
epoch_val_f1 = sum(val_f1s) / len(val_f1s)
if epoch >= 1:
plt.figure(figsize=(10, 5))
plt.plot(range(1, epoch + 2), training_losses, label='Training Loss')
plt.plot(range(1, epoch + 2), validation_losses, label='Validation Loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training and Validation Loss Over Epochs')
plt.legend()
plt.savefig(f"{plots_folder}/loss_plot_epoch_{epoch + 1}.png")
plt.close()
print(Fore.YELLOW + "======================== STATS =============================")
print(Fore.YELLOW + f"Epoch {epoch + 1}/{EPOCHS} - Validation Acc: {epoch_val_acc:.4f}, Validation F1: {epoch_val_f1:.4f}")
print(Fore.YELLOW + f"Epoch {epoch + 1}/{EPOCHS} - Training Loss: {avg_train_loss:.4f}, Validation Loss: {avg_val_loss:.4f}")
print(Fore.YELLOW + "============================================================" + Style.RESET_ALL)
with open(f"{text_logs_folder}/log_training.txt", "a", encoding='utf-8') as f:
f.write("======================== STATS =============================\n")
f.write(f"Epoch {epoch + 1}/{EPOCHS} - Validation Acc: {epoch_val_acc:.4f}, Validation F1: {epoch_val_f1:.4f}\n")
f.write(f"Epoch {epoch + 1}/{EPOCHS} - Training Loss: {avg_train_loss:.4f}, Validation Loss: {avg_val_loss:.4f}\n")
f.write("============================================================\n")
if (epoch + 1) % 2 == 0 or epoch == EPOCHS - 1:
remove_hooks(hooks)# Remove hooks
print(Fore.CYAN + "Saving checkpoints..." + Style.RESET_ALL)
ModelSaver(model, epoch, save_as_gmp=save_as_gmp) # NEW SAVER
print(Fore.GREEN + f"Model saved to {ft_checkpoints_folder}" + Style.RESET_ALL)
hooks = register_hooks(model, modified_neurons_layers, scale_factors)# Re-attach hooks
remove_hooks(hooks)# After training
trainloop()