-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathekf_predict2.m
136 lines (126 loc) · 3.21 KB
/
ekf_predict2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
%EKF_PREDICT2 2nd order Extended Kalman Filter prediction step
%
% Syntax:
% [M,P] = EKF_PREDICT2(M,P,[A,F,Q,a,W,param])
%
% In:
% M - Nx1 mean state estimate of previous step
% P - NxN state covariance of previous step
% A - Derivative of a() with respect to state as
% matrix, inline function, function handle or
% name of function in form A(x,param) (optional, default identity)
% F - NxNxN Hessian matrix of the state transition function
% w.r.t. state variables as matrix, inline
% function, function handle or name of function
% in form F(x,param) (optional, default identity)
% Q - Process noise of discrete model (optional, default zero)
% a - Mean prediction E[a(x[k-1],q=0)] as vector,
% inline function, function handle or name
% of function in form a(x,param) (optional, default A(x)*X)
% W - Derivative of a() with respect to noise q
% as matrix, inline function, function handle
% or name of function in form W(x,k-1,param) (optional, default identity)
% param - Parameters of a (optional, default empty)
%
%
%
% Out:
% M - Updated state mean
% P - Updated state covariance
%
% Description:
% Perform Extended Kalman Filter prediction step.
%
% See also:
% EKF_PREDICT1, EKF_UPDATE1, EKF_UPDATE2, DER_CHECK, LTI_DISC,
% KF_PREDICT, KF_UPDATE
% History:
% 22.5.07 JH Initial version. Modified from ekf_predict1.m
% originally created by SS.
%
% Copyright (C) 2007 Jouni Hartikainen, Simo S�rkk�
%
% $Id$
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
function [M,P] = ekf_predict2(M,P,A,F,Q,a,W,param)
%
% Check arguments
%
if nargin < 3
A = [];
end
if nargin < 4
F = []
end
if nargin < 5
Q = [];
end
if nargin < 6
a = [];
end
if nargin < 7
W = [];
end
if nargin < 8
param = [];
end
% Apply defaults
if isempty(A)
A = eye(size(M,1));
end
if isempty(F)
F = eye(size(M,1));
end
if isempty(Q)
Q = zeros(size(M,1));
end
if isempty(W)
W = eye(size(M,1),size(Q,2));
end
if isnumeric(A)
% nop
elseif isstr(A) | strcmp(class(A),'function_handle')
A = feval(A,M,param);
else
A = A(M,param);
end
if isnumeric(F)
% nop
elseif isstr(F) | strcmp(class(F),'function_handle')
F = feval(F,M,param);
else
F = F(M,param);
end
% Perform prediction
if isempty(a)
M = A*M;
elseif isnumeric(a)
M = a;
elseif isstr(a) | strcmp(class(a),'function_handle')
M = feval(a,M,param);
else
M = a(M,param);
end
for i=1:size(F,1)
F_i = squeeze(F(i,:,:));
M(i) = M(i) + 0.5*trace(F_i*P);
end
if isnumeric(W)
% nop
elseif isstr(W) | strcmp(class(W),'function_handle')
W = feval(W,M,param);
else
W = W(M,param);
end
P_new = A * P * A' + W * Q * W';
for i = 1:size(F,1)
for j = 1:size(F,1)
F_i = squeeze(F(i,:,:));
F_j = squeeze(F(j,:,:));
P_new(i,j) = P_new(i,j)+0.5*trace(F_i*P*F_j*P);
end
end
P = P_new;