-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetf_smooth1.m
191 lines (178 loc) · 5.06 KB
/
etf_smooth1.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
%ETF_SMOOTH1 Smoother based on two extended Kalman filters
%
% Syntax:
% [M,P] = ETF_SMOOTH1(M,P,Y,A,Q,ia,W,aparam,H,R,h,V,hparam,same_p_a,same_p_h)
%
% In:
% M - NxK matrix of K mean estimates from Kalman filter
% P - NxNxK matrix of K state covariances from Kalman Filter
% Y - Measurement vector
% A - Derivative of a() with respect to state as
% matrix, inline function, function handle or
% name of function in form A(x,param) (optional, default eye())
% Q - Process noise of discrete model (optional, default zero)
% ia - Inverse prediction function as vector,
% inline function, function handle or name
% of function in form ia(x,param) (optional, default inv(A(x))*X)
% W - Derivative of a() with respect to noise q
% as matrix, inline function, function handle
% or name of function in form W(x,param) (optional, default identity)
% aparam - Parameters of a. Parameters should be a single cell array, vector or a matrix
% containing the same parameters for each step or if different parameters
% are used on each step they must be a cell array of the format
% { param_1, param_2, ...}, where param_x contains the parameters for
% step x as a cell array, a vector or a matrix. (optional, default empty)
% H - Derivative of h() with respect to state as matrix,
% inline function, function handle or name
% of function in form H(x,param)
% R - Measurement noise covariance.
% h - Mean prediction (measurement model) as vector,
% inline function, function handle or name
% of function in form h(x,param). (optional, default H(x)*X)
% V - Derivative of h() with respect to noise as matrix,
% inline function, function handle or name
% of function in form V(x,param). (optional, default identity)
% hparam - Parameters of h. See the description of aparam for the format of
% parameters. (optional, default aparam)
% same_p_a - If 1 uses the same parameters
% on every time step for a (optional, default 1)
% same_p_h - If 1 uses the same parameters
% on every time step for h (optional, default 1)
%
% Out:
% M - Smoothed state mean sequence
% P - Smoothed state covariance sequence
%
% Description:
% Two filter nonlinear smoother algorithm. Calculate "smoothed"
% sequence from given extended Kalman filter output sequence
% by conditioning all steps to all measurements.
%
% Example:
% [...]
%
% See also:
% ERTS_SMOOTH1, EKF_PREDICT1, EKF_UPDATE1, EKF_PREDICT2, EKF_UPDATE2
% History:
% 02.08.2007 JH Changed the name to etf_smooth1
% 04.05.2007 JH Added the possibility to pass different parameters for a and h
% for each step.
% 2006 SS Initial version.
%
% Copyright (C) 2006 Simo Särkkä
% Copyright (C) 2007 Jouni Hartikainen
%
% $Id$
%
% This software is distributed under the GNU General Public
% Licence (version 2 or later); please refer to the file
% Licence.txt, included with the software, for details.
%
function [M,P] = etf_smooth1(M,P,Y,A,Q,ia,W,aparam,H,R,h,V,hparam,same_p_a,same_p_h)
%
% Check which arguments are there
%
if nargin < 3
error('Too few arguments');
end
if nargin < 4
A = [];
end
if nargin < 5
Q = [];
end
if nargin < 6
ia = [];
end
if nargin < 7
W = [];
end
if nargin < 8
aparam = [];
end
if nargin < 9
H = [];
end
if nargin < 10
R = [];
end
if nargin < 11
h = [];
end
if nargin < 12
V = [];
end
if nargin < 13
hparam = [];
end
if nargin < 14
same_p_a = 1;
end
if nargin < 15
same_p_h = 1;
end
%
% Run the backward filter
%
BM = zeros(size(M));
BP = zeros(size(P));
%fm = zeros(size(M,1),1);
%fP = 1e12*eye(size(M,1));
fm = M(:,end);
fP = P(:,:,end);
BM(:,end) = fm;
BP(:,:,end) = fP;
for k=(size(M,2)-1):-1:1
if isempty(hparam)
hparams = [];
elseif same_p_h
hparams = hparam;
else
hparams = hparam{k};
end
if isempty(aparam)
aparams = [];
elseif same_p_a
aparams = aparam;
else
aparams = aparam{k};
end
[fm,fP] = ekf_update1(fm,fP,Y(:,k+1),H,R,h,V,hparams);
%
% Backward prediction
%
if isempty(A)
IA = [];
elseif isnumeric(A)
IA = inv(A);
elseif isstr(A) | strcmp(class(A),'function_handle')
IA = inv(feval(A,fm,aparams));
else
IA = inv(A(fm,aparams));
end
if isempty(W)
if ~isempty(Q)
B = eye(size(M,1),size(Q,1));
else
B = eye(size(M,1));
end
elseif isnumeric(W)
B = W;
elseif isstr(W) | strcmp(class(W),'function_handle')
B = feval(W,mf,aparams);
else
B = W(mf,aparams);
end
IQ = IA*B*Q*B'*IA';
[fm,fP] = ekf_predict1(fm,fP,IA,IQ,ia,[],aparams);
BM(:,k) = fm;
BP(:,:,k) = fP;
end
%
% Combine estimates
%
for k=1:size(M,2)-1
tmp = inv(inv(P(:,:,k)) + inv(BP(:,:,k)));
M(:,k) = tmp * (P(:,:,k)\M(:,k) + BP(:,:,k)\BM(:,k));
P(:,:,k) = tmp;
end