-
Notifications
You must be signed in to change notification settings - Fork 339
/
glossaries.tex
691 lines (550 loc) · 12.4 KB
/
glossaries.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
%% glossaries
%% Chapter 1
\newglossaryentry{perceptron}{
name={感知机},
description={\emph{Perceptron}}
}
\newglossaryentry{sigmoid-neuron}{
name={S 型神经元},
description={\emph{Sigmoid Neuron}}
}
\newglossaryentry{sigmoid-func}{
name={S 型函数},
description={\emph{Sigmoid Function}}
}
\newglossaryentry{sgd}{
name={随机梯度下降},
description={\emph{Stochastic Gradient Descent}}
}
\newglossaryentry{weight}{
name={权重},
description={\emph{Weight}}
}
\newglossaryentry{bias}{
name={偏置},
description={\emph{Bias}}
}
\newglossaryentry{threshold}{
name={阈值},
description={\emph{Threshold}}
}
\newglossaryentry{epoch}{
name={迭代期},
description={\emph{Epoch}}
}
\newglossaryentry{mini-batch}{
name={小批量数据},
description={\emph{Mini-batch}}
}
\newglossaryentry{hidden-layer}{
name={隐藏层},
description={\emph{Hidden Layer}}
}
\newglossaryentry{mlp}{
name={多层感知机},
description={\emph{Multilayer Perceptron}}
}
\newglossaryentry{rnn}{
name={循环神经网络},
description={\emph{Recurrent Neural Network(s)}}
}
\newglossaryentry{cost-func}{
name={代价函数},
description={\emph{Cost Function}}
}
\newglossaryentry{learning-rate}{
name={学习速率},
description={\emph{Learning Rate}}
}
\newglossaryentry{bp}{
name={反向传播},
description={\emph{Backpropagation}}
}
\newglossaryentry{svm}{
name={支持向量机},
description={\emph{Support Vector Machine}}
}
\newglossaryentry{deep-neural-networks}{
name={深度神经网络},
description={\emph{Deep Neural Networks}}
}
\newglossaryentry{error}{
name={误差},
description={\emph{Error}}
}
\newglossaryentry{reln}{
name={修正线性神经元},
description={\emph{Rectified Linear Neuron}}
}
\newglossaryentry{relu}{
name={修正线性单元},
description={\emph{Rectified Linear Unit}}
}
\newglossaryentry{softmax}{
name={柔性最大值},
description={\emph{Softmax}}
}
\newglossaryentry{softmax-func}{
name={柔性最大值函数},
description={\emph{Softmax Function}}
}
\newglossaryentry{log-likelihood}{
name={对数似然},
description={\emph{Log-likelihood}}
}
\newglossaryentry{regularization}{
name={正则化},
description={\emph{Regularization}}
}
\newglossaryentry{weight-decay}{
name={权重衰减},
description={\emph{Weight Decay}}
}
\newglossaryentry{regularization-term}{
name={正则化项},
description={\emph{Regularization Term}}
}
\newglossaryentry{lrf}{
name={局部感受野},
description={\emph{Local Receptive Fields}}
}
\newglossaryentry{shared-weights}{
name={共享权重},
description={\emph{Shared Weights}}
}
\newglossaryentry{pooling}{
name={池化},
description={\emph{Pooling}}
}
\newglossaryentry{cnn}{
name={卷积神经网络},
description={\emph{Convolutional Neural Networks}}
}
\newglossaryentry{idui}{
name={意图驱动的用户接口},
description={\emph{Intention-driven User Interface}}
}
\newglossaryentry{tanh}{
name={双曲正切},
description={\emph{Tanh},(发音为 “tanch”)}
}
\newglossaryentry{tanh-func}{
name={双曲正切函数},
description={\emph{Tanh Function}}
}
\newglossaryentry{tanh-neuron}{
name={双曲正切神经元},
description={\emph{Tanh Neuron}}
}
\newglossaryentry{hyperbolic-tangent}{
name={双曲正切},
description={\emph{Hyperbolic Tangent}}
}
\newglossaryentry{hyper-params}{
name={超参数},
description={\emph{Hyper-parameters}}
}
\newglossaryentry{lstm}{
name={长短期记忆单元},
description={\emph{Long Short-term Memory Units}}
}
\newglossaryentry{dbn}{
name={深度信念网络},
description={\emph{Deep Belief Network(s)}}
}
%% ------
\newglossaryentry{logistic-regression}{
name={Logistic 回归},
description={\emph{Logistic Regression}}
}
\newglossaryentry{naive-bayes}{
name={朴素贝叶斯},
description={\emph{naive Bayes}}
}
\newglossaryentry{representations}{
name={表征},
description={\emph{Representations},表征是信息的呈现方式}
}
\newglossaryentry{rep-learning}{
name={表征学习},
description={\emph{Representation Learning}}
}
\newglossaryentry{autoencoder}{
name={自编码器},
description={\emph{Autoencoder (s)}}
}
\newglossaryentry{encoder}{
name={编码器},
description={\emph{encoder}}
}
\newglossaryentry{decoder}{
name={解码器},
description={\emph{decoder}}
}
\newglossaryentry{fov}{
name={变化因素},
description={\emph{factors of variation}}
}
%% Chapter 2
\newglossaryentry{scalar}{
name={标量},
description={scalar}
}
\newglossaryentry{scalars}{
name={标量},
description={Scalars}
}
\newglossaryentry{vec}{
name={向量},
description={vector}
}
\newglossaryentry{vecs}{
name={向量},
description={Vectors}
}
\newglossaryentry{matrix}{
name={矩阵},
description={matrix}
}
\newglossaryentry{matrices}{
name={矩阵},
description={Matrices}
}
\newglossaryentry{tensor}{
name={张量},
description={tensor}
}
\newglossaryentry{tensors}{
name={张量},
description={Tensors}
}
\newglossaryentry{transpose}{
name={转置},
description={transpose}
}
\newglossaryentry{main-diag}{
name={主对角线},
description={main diagonal}
}
\newglossaryentry{broadcasting}{
name={广播},
description={broadcasting}
}
\newglossaryentry{matrix-product}{
name={矩阵积},
description={matrix product}
}
\newglossaryentry{element-product}{
name={按元素乘积},
description={element-wise product}
}
\newglossaryentry{hadamard-product}{
name={阿达玛乘积},
description={Hadamard product}
}
\newglossaryentry{dot-product}{
name={点乘},
description={dot product}
}
\newglossaryentry{matrix-inversion}{
name={矩阵求逆},
description={matrix inversion}
}
\newglossaryentry{identity-matrix}{
name={单位矩阵},
description={identity matrix}
}
\newglossaryentry{linear-comb}{
name={线性组合},
description={linear combination}
}
\newglossaryentry{span}{
name={生成空间},
description={span}
}
\newglossaryentry{column-space}{
name={列空间},
description={column space}
}
\newglossaryentry{range}{
name={范围},
description={range}
}
\newglossaryentry{linear-dep}{
name={线性相关},
description={linear dependence}
}
\newglossaryentry{linearly-dep}{
name={线性无关},
description={linearly dependent}
}
\newglossaryentry{linearly-indep}{
name={线性无关},
description={linearly independent}
}
\newglossaryentry{linear-indep}{
name={线性无关},
description={linear independent}
}
\newglossaryentry{square}{
name={方的},
description={square}
}
\newglossaryentry{singular}{
name={奇异矩阵},
description={singular}
}
\newglossaryentry{norm}{
name={范数},
description={norm}
}
\newglossaryentry{tri-inequal}{
name={三角不等式},
description={triangle inequality}
}
\newglossaryentry{eu-norm}{
name={欧几里德范数},
description={Euclidean norm}
}
\newglossaryentry{max-norm}{
name={最大值范数},
description={max norm}
}
\newglossaryentry{fr-norm}{
name={弗罗贝尼乌斯范数},
description={Frobenius norm}
}
\newglossaryentry{diag}{
name={对角线},
description={Diagonal}
}
\newglossaryentry{symmetric}{
name={对称},
description={symmetric}
}
\newglossaryentry{unit-vec}{
name={单位向量},
description={unit vector}
}
\newglossaryentry{unit-norm}{
name={单位范数},
description={unit norm}
}
\newglossaryentry{ortho}{
name={正交的},
description={orthogonal}
}
\newglossaryentry{orthonormal}{
name={标准正交的},
description={orthonormal}
}
\newglossaryentry{orthonormal-matrix}{
name={正交矩阵},
description={orthonormal matrix}
}
\newglossaryentry{eigen-decompos}{
name={特征分解},
description={eigendecomposition}
}
\newglossaryentry{eigen-vec}{
name={特征向量},
description={eigenvector}
}
\newglossaryentry{eigen-vecs}{
name={特征向量},
description={eigenvectors}
}
\newglossaryentry{eigen-val}{
name={特征值},
description={eigenvalue}
}
\newglossaryentry{eigen-vals}{
name={特征值},
description={eigenvalues}
}
\newglossaryentry{left-eigen-vec}{
name={左特征向量},
description={left eigenvector}
}
\newglossaryentry{positive-definite}{
name={正定矩阵},
description={positive definite}
}
\newglossaryentry{positive-semidefinite}{
name={半正定矩阵},
description={positive semidefinite}
}
\newglossaryentry{negative-definite}{
name={负定矩阵},
description={negative definite}
}
\newglossaryentry{negative-semidefinite}{
name={半负定矩阵},
description={negative semidefinite}
}
\newglossaryentry{svd}{
name={奇异值分解},
description={singular value decomposition}
}
\newglossaryentry{singular-vecs}{
name={奇异向量},
description={singular vectors}
}
\newglossaryentry{singular-vals}{
name={奇异值},
description={singular values}
}
\newglossaryentry{singular-val}{
name={奇异值},
description={singular value}
}
\newglossaryentry{left-singular-vecs}{
name={左奇异向量},
description={left-singular vectors}
}
\newglossaryentry{right-singular-vecs}{
name={右奇异向量},
description={right-singular vectors}
}
\newglossaryentry{moore-penrose-pseudoinverse}{
name={摩尔--彭若斯广义逆},
description={Moore-Penrose pseudoinverse}
}
\newglossaryentry{pca}{
name={主成分分析},
description={principal components analysis}
}
%% Chapter 4
\newglossaryentry{overflow}{
name={溢出},
description={overflow}
}
\newglossaryentry{underflow}{
name={下溢},
description={underflow}
}
\newglossaryentry{cond-num}{
name={条件数},
description={condition number}
}
\newglossaryentry{obj-func}{
name={目标函数},
description={objective function}
}
\newglossaryentry{criterion}{
name={准则},
description={criterion, criterion funciton 准则函数}
}
\newglossaryentry{loss-func}{
name={损失函数},
description={loss function}
}
\newglossaryentry{err-func}{
name={误差函数},
description={error function}
}
\newglossaryentry{gradient-descent}{
name={梯度下降},
description={gradient descent}
}
\newglossaryentry{critical-points}{
name={临界点},
description={critical points}
}
\newglossaryentry{stationary-points}{
name={驻点},
description={stationary points}
}
\newglossaryentry{local-min}{
name={局部最小值},
description={local minimum}
}
\newglossaryentry{local-max}{
name={局部最大值},
description={local maximum}
}
\newglossaryentry{saddle-points}{
name={鞍点},
description={saddle points}
}
\newglossaryentry{global-min}{
name={全局最小值},
description={global minimum}
}
\newglossaryentry{partial-derivatives}{
name={偏导数},
description={partial derivatives}
}
\newglossaryentry{gradient}{
name={梯度},
description={gradient}
}
\newglossaryentry{directional-derivative}{
name={方向导数},
description={directional derivative}
}
\newglossaryentry{steepest-descent}{
name={最陡下降法},
description={method of steepest descent}
}
\newglossaryentry{line-search}{
name={线搜索},
description={line search}
}
\newglossaryentry{hill-climbing}{
name={爬山算法},
description={hill climbing}
}
\newglossaryentry{jacobian-matrix}{
name={雅可比矩阵},
description={Jacobian matrix}
}
\newglossaryentry{second-derivative}{
name={二阶导数},
description={second derivative}
}
\newglossaryentry{curvature}{
name={曲率},
description={curvature}
}
\newglossaryentry{hessian-matrix}{
name={海森矩阵},
description={Hessian matrix}
}
\newglossaryentry{second-derivative-test}{
name={二阶导数检测},
description={second derivative test}
}
%% Chapter 12
\newglossaryentry{warps}{
name={线程束},
description={\emph{Warps},同时运行的一组线程的称呼}
}
\newglossaryentry{overfitting}{
name={过拟合},
description={\emph{Overfitting},过度拟合,过拟合,过适}
}
\newglossaryentry{overtraining}{
name={过度训练},
description={\emph{Overtraining}}
}
\newglossaryentry{generalization_error}{
name={泛化误差},
description={\emph{Generalization error},泛化误差}
}
\newglossaryentry{dropout}{
name={弃权},
description={\emph{Dropout}, 弃权}
}
\newglossaryentry{bdt}{
name={提高决策树},
description={\emph{Boosted decision trees}}
}
\newglossaryentry{gcn}{
name={全局对比度归一化},
description={\emph{Global contrast normalization}, 全局对比度归一化}
}
\newglossaryentry{mode}{
name={众数},
description={\emph{mode}, 众数}
}