forked from perlatex/R_for_Data_Science
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtidyverse_beauty_of_across4.Rmd
564 lines (415 loc) · 10.8 KB
/
tidyverse_beauty_of_across4.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
# tidyverse中的across()之美4 {#tidyverse-beauty-of-across4}
本章讲讲`mutate()`中的`across()`与`c_acorss()`、`map_df()`、`map2_dfc()`系列的纠缠。
内容涉及迭代、泛函、返回数据框、**数据框并入**等概念。
```{r, message=FALSE, warning=FALSE}
library(tidyverse)
penguins <- palmerpenguins::penguins %>% drop_na()
```
## `mutate()` 数据框并入
在以往的学习中,我们了解到`mutate()`的功能是新增一列,
```{r}
d <- tibble(
x = 3:5
)
d %>%
mutate(x1 = x*2)
```
有时候我在想同时新增多列呢?
```{r}
d %>%
mutate(
x1 = x*2,
x2 = x^2
)
```
从形式上看,相当于在原来d的基础上**并入**了一个新的数据框。或许`mutate()`和我们认识的不一样, 于是我试试
```{r}
t <- tibble(
y = 4:6
)
d %>%
mutate(t)
```
奥利给。我们再看看,让数据框是以函数的形式返回
```{r}
my_fun <- function(x) {
tibble(
x1 = x * 2,
x2 = x^2)
}
d %>%
mutate(
my_fun(x)
)
```
是不是很惊喜。 我们再看看`across()`函数,在`mutate()` 中 `across()` 返回的就是数据框,正好并入原来d,道理是一样的。
```{r}
d %>%
mutate(
across(x, list(f1 = ~ .x * 2, f2 = ~ .x^2))
)
```
事实上,`across()`的**返回数据框**的特性,结合`mutate()`的**并入数据框**功能,让数据处理如鱼得水、如虎添翼。
## 从一个问题开始
计算每天水分和食物的所占比例,比如第一天water和food都是10.0,那么各自比例都是50%.
```{r beauty-of-across4-2}
d <- tibble::tribble(
~water, ~food,
10.0, 10.0,
12.1, 10.3,
13.5, 19.1,
17.4, 16.0,
25.8, 15.6,
27.4, 19.8
)
d
```
## 传统的方法
传统的方法是,把数据框旋转成长表格,计算所占比例后,再旋转回来
```{r beauty-of-across4-3}
d %>%
rownames_to_column() %>%
pivot_longer(
cols = !rowname
) %>%
group_by(rowname) %>%
mutate(
percent = 100 * value / sum(value)
) %>%
ungroup() %>%
pivot_wider(
names_from = name,
values_from = c(value, percent),
names_glue = "{name}_{.value}"
)
```
## across()的方法
传统的方法,用到基本的dplyr函数,思路很清晰,但有点周折。下面,我列出几个比较新颖的方法,当然这些方法都来源于强大`across()`函数
### 方法1
```{r beauty-of-across4-4}
d %>%
mutate(100 * across(.names = "%{.col}") / rowSums(across())) %>%
ungroup()
```
### 方法2
```{r beauty-of-across4-5}
rowPercent <- function(df) {
df / rowSums(df) * 100
}
d %>%
mutate(rowPercent(across(.names = "%{.col}")))
```
### 方法3
```{r, eval=FALSE}
d %>%
rowwise() %>%
mutate(
across(everything(), ~ .x / sum(c_across()) )
)
df %>%
rowwise() %>%
mutate(
across(everything(), .names = "prop_{.col}", ~ .x / sum(c_across()) )
)
df %>%
rowwise() %>%
mutate(
across(.names = "prop_{.col}", .fns = ~ .x / sum(c_across()) )
)
```
```{r beauty-of-across4-6}
d %>%
rowwise() %>%
mutate(100 * across(.names = "%{.col}") / sum(c_across())) %>%
ungroup()
```
### 方法4
```{r beauty-of-across4-7}
scale <- function(x) {
100 * x / sum(x, na.rm = TRUE)
}
d %>%
rowwise() %>%
mutate(
scale(across(.names = "%{.col}"))
)
```
### 方法5
```{r beauty-of-across4-8}
d %>%
rowwise() %>%
mutate(100 * proportions(across(.names = "%{.col}")))
```
### 方法6
更好的呈现比例
```{r beauty-of-across4-8-0}
d %>%
rowwise() %>%
mutate(
across(c(water, food), ~scales::label_percent(scale = 100)(.x /sum(c_across())), .names = "{.col}_%")
)
```
上面的方法虽然很多,但基本思路是一样的。
## 纠缠不清的迭代
我们先弄清楚迭代方向:
- `rowwise()` 一行一行的处理
- `across()` 一列一列的处理
- `rowwise() + across()` 这种组合,双重迭代,(一行一行 `+` 一列一列)就变成了一个一个的处理
- `across() + purrr::map_dbl()`这种组合分两种情形:
- `purrr::map_dbl()` 作为`across( .fns = )` 中的函数,即`across(.cols = , .fns = map_dbl() )`。`across()`一列一列的迭代,每一列又传入`purrr::map_dbl()`再次迭代,因此这里是双重迭代
- `across()`作为`purrr::map_df(.x = )`的数据,即`purrr::map_df(.x = across(), .f = )`。因为在`mutate()`中`across()`返回数据框,因此可以把`across()`整体视为**数据框**,然后这个数据框传入`purrr::map_df(.x = )`进行迭代,因此这种情形可以认为只有`purrr::map_*()`一次迭代。
```{r}
# rowwise() + across()
# rowwise() 设定行方向后,接着across() 就行方向上的元素一个一个的执行.fns
# 循环模式:第一层,一行一行的,第二层在每一行里,一个元素到一个元素
penguins %>%
group_by(species, year) %>%
summarise(flipper_length_mm = list(flipper_length_mm)) %>%
ungroup() %>%
pivot_wider(
names_from = year,
values_from = flipper_length_mm
) %>%
rowwise() %>%
mutate(
across(where(is.list), .fns = length)
)
```
```{r}
# across(.cols = , .fns = purrr::map_dbl() )
# 用across()就是一列一列的处理,
# 此时的一列是vector or list,又可以进入purrr::map_dbl()再次迭代,对这一列的每个元素,执行.f
# 然后across()到下一列
# 循环模式:第一层,一列一列,第二层在每一列里,一个元素到一个元素
penguins %>%
group_by(species, year) %>%
summarise(flipper_length_mm = list(flipper_length_mm)) %>%
ungroup() %>%
pivot_wider(
names_from = year,
values_from = flipper_length_mm
) %>%
mutate(
across(where(is.list), ~ purrr::map_dbl(.x, length))
)
```
```{r}
# `purrr::map_df(.x = across(), .f = )`
# mutate()中的`across()`整体被视为**数据框**,传入purrr::map_df(.x = across(), .f = ),然后迭代,返回数据框最后并入最初的df
penguins %>%
select(species, starts_with("bill_")) %>%
head(5) %>%
mutate(
map_dfc(
.x = across(ends_with("_mm"), .names = '{sub("_mm", "", .col)}'),
.f = ~.x^2
)
)
```
写成分步的形式,可能更好理解
```{r}
penguins %>%
select(species, starts_with("bill_")) %>%
head(5) %>%
mutate({
data <- across(ends_with("_mm"), .names = '{sub("_mm", "", .col)}')
out <- map_dfc(data, .f = ~.x^2)
out
})
```
再回头看`across()`的常规用法,是否对它有了新的认识?
```{r}
penguins %>%
select(species, starts_with("bill_")) %>%
head(5) %>%
mutate(
across(ends_with("_mm"), .fns = ~.x^2, .names = '{sub("_mm", "", .col)}')
)
```
### 案例1
觉得不过瘾,我们看下面复杂点的例子
```{r}
tt <- penguins %>%
group_by(species, year) %>%
summarise(
across(c(bill_length_mm, bill_depth_mm), list)
) %>%
ungroup()
tt
```
```{r}
tt %>%
mutate(
map_dfc(
.x = across(ends_with("_mm"), .names = '{sub("_mm", "", .col)}'),
.f = ~ map_dbl(.x, length)
)
)
```
分步写法
```{r}
tt %>%
mutate({
data <- across(ends_with("_mm"), .names = '{sub("_mm", "", .col)}')
out <- map_dfc(data, .f = ~ map_dbl(.x, length))
out
})
```
回到常规写法
```{r}
tt %>%
mutate(
across(ends_with("_mm"), .fns = ~ map_dbl(.x, length), .names = '{sub("_mm", "", .col)}')
)
```
### 案例2
更变态的案例
```{r}
tt %>%
mutate(
purrr::map2_dfr(
.x = across(bill_length_mm, .names = "cor"),
.y = across(bill_depth_mm),
.f = ~ map2_dbl(.x, .y, cor)
)
)
```
```{r}
tt %>%
mutate(
purrr::map2_dfr(
.x = across(bill_length_mm, .names = "cor"),
.y = across(bill_depth_mm),
.f = ~ map2_dbl(.x, .y, cor)
)
)
```
分步写法
```{r}
tt %>%
mutate({
data1 <- across(bill_length_mm, .names = "cor")
data2 <- across(bill_depth_mm)
out <- purrr::map2_dfc(data1, data2, .f = ~ map2_dbl(.x, .y, cor))
out
})
```
常规方法
```{r}
tt %>%
rowwise() %>%
mutate(
cor = cor(bill_length_mm, bill_depth_mm)
)
```
我们这样折腾只是为了展示各种迭代.
## 习题
### 习题1
对于[数据](https://github.com/tidyverse/dplyr/issues/6109)
```{r}
df <- tibble(
id = 1:10,
sex = c("m", "m", "m", "f", "f", "f", "m", "f", "f", "m"),
lds1.x = c(NA, 1, 0, 1, NA, 0, 0, NA, 0, 1),
lds1.y = c(1, NA, 1, 1, 0, NA, 0, 3, NA, 1),
lds2.x = c(2, 1, NA, 0, 0, NA, 1, NA, NA, 1),
lds2.y = c(0, 2, 2, NA, NA, 0, 0, 3, 0, NA)
)
df
```
希望两两`coalesce`,比如,
```{r, eval=FALSE}
df %>%
mutate(
lds1 = coalesce(lds1.x, lds1.y),
lds2 = coalesce(lds2.x, lds2.y)
)
```
但要求是用`across()`写。
解题思路:
- 在`mutate()`中,把`across()`整体当作**数据框**用,比如
```{r, eval=FALSE}
df %>%
mutate(
across(ends_with(".x"))
)
df %>%
mutate(
across(ends_with(".x"), .names = '{sub(".x","",.col)}')
)
```
- 在`mutate()`中`across()`视为数据框,传递给`map_dfc()`后,`map_dfc()`将其转换成一个新的数据框,这个新的数据框最后并入`df`
```{r, eval=FALSE}
df %>%
mutate(
map_dfc(
.x = across(ends_with(".x"), .names = '{sub(".x","", .col)}'),
.f = ~is.na(.x)
)
)
```
- 两个`across()`对应两个**数据框**,传递给`map2_dfc()`函数
```{r}
df %>%
mutate(
map2_dfr(
.x = across(ends_with(".x"), .names = '{sub(".x","",.col)}'),
.y = across(ends_with(".y")),
.f = coalesce # Vectors coalesce
)
)
```
- 分步写,更清晰和优雅。迭代过程:数据框df1的第一列和数据框data2的第一列coalesce,然后数据框df1的第二列和数据框df2的第二列coalesce.
```{r}
df %>%
mutate({
df1 <- across(ends_with(".x"), .names = '{sub(".x","",.col)}')
df2 <- across(ends_with(".y"))
out <- purrr::map2_dfc(df1, df2, ~ coalesce(.x, .y))
out
})
```
### 习题2
题目:如果符合某个条件,就让指定的列反号。比如,如果x小于4,x和y两列就反号。
事实上,完成这个任务的方法很多,我们只是演示`across()`的某些特征。
```{r}
d <- tibble( x = 1:4, y = 1:4)
d
```
```{r}
# using data frame returns
d %>%
mutate({
test <- x < 4
x[test] <- -x[test]
y[test] <- -y[test]
data.frame(x = x, y = y)
})
```
```{r}
# using across()
d %>%
mutate({
test <- x < 4
across(c(x, y), ~ {.x[test] <- -.x[test]; .x })
})
```
```{r}
# further abstract
negate_if <- function(condition, cols) {
across({{ cols }}, ~ {
.x[condition] <- -.x[condition]
.x
})
}
d %>%
mutate(negate_if(x < 4, c(x, y)))
```
```{r beauty-of-across4-98, echo = F}
# remove the objects
# ls() %>% stringr::str_flatten(collapse = ", ")
rm(d, scale, rowPercent, penguins, negate_if, df, tt)
```
```{r beauty-of-across4-99, echo = F, message = F, warning = F, results = "hide"}
pacman::p_unload(pacman::p_loaded(), character.only = TRUE)
```