forked from nikhilmaram/Show_and_Tell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseModel.py
228 lines (198 loc) · 9.18 KB
/
baseModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import copy
import json
import os
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import tensorflow as tf
from tqdm import tqdm
import six.moves.cPickle as pickle
from utils.coco.pycocoevalcap.eval import COCOEvalCap
from utils.misc import ImageLoader
from utils.nn import NN
class BaseModel(object):
def __init__(self, config):
self.config = config
self.is_train = True if config.phase == 'train' else False
self.train_cnn = self.is_train and config.train_cnn
self.image_loader = ImageLoader('./utils/ilsvrc_2012_mean.npy')
self.image_shape = [224, 224, 3]
self.nn = NN(config)
self.global_step = tf.Variable(0,
name = 'global_step',
trainable = False)
self.build()
def build(self):
raise NotImplementedError()
def train(self, sess, train_data):
""" Train the model using the COCO train2014 data. """
print("Training the model...")
config = self.config
if not os.path.exists(config.summary_dir):
os.mkdir(config.summary_dir)
train_writer = tf.summary.FileWriter(config.summary_dir,
sess.graph)
for _ in tqdm(list(range(config.num_epochs)), desc='epoch'):
for _ in tqdm(list(range(train_data.num_batches)), desc='batch'):
batch = train_data.next_batch()
image_files, sentences, masks = batch
images = self.image_loader.load_images(image_files)
feed_dict = {self.images: images,
self.sentences: sentences,
self.masks: masks}
# _, summary, global_step = sess.run([self.opt_op,
# self.summary,
# self.global_step],
# feed_dict=feed_dict)
_, global_step = sess.run([self.opt_op,
self.global_step],
feed_dict=feed_dict)
if (global_step + 1) % config.save_period == 0:
self.save()
#train_writer.add_summary(summary, global_step)
train_data.reset()
self.save()
train_writer.close()
print("Training complete.")
def eval(self, sess, eval_gt_coco, eval_data, vocabulary):
""" Evaluate the model using the COCO val2014 data. """
print("Evaluating the model ...")
config = self.config
results = []
if not os.path.exists(config.eval_result_dir):
os.mkdir(config.eval_result_dir)
# Generate the captions for the images
idx = 0
for k in tqdm(list(range(eval_data.num_batches)), desc='batch'):
#for k in range(1):
batch = eval_data.next_batch()
#caption_data = self.beam_search(sess, batch, vocabulary)
images = self.image_loader.load_images(batch)
caption_data, scores = sess.run([self.predictions, self.probs], feed_dict={self.images: images})
fake_cnt = 0 if k<eval_data.num_batches-1 \
else eval_data.fake_count
for l in range(eval_data.batch_size-fake_cnt):
## self.predictions will return the indexes of words, we need to find the corresponding word from it.
word_idxs = caption_data[l]
## get_sentence will return a sentence till there is a end delimiter which is '.'
caption = str(vocabulary.get_sentence(word_idxs))
results.append({'image_id': int(eval_data.image_ids[idx]),
'caption': caption})
#print(results)
idx += 1
# Save the result in an image file, if requested
if config.save_eval_result_as_image:
image_file = batch[l]
image_name = image_file.split(os.sep)[-1]
image_name = os.path.splitext(image_name)[0]
img = mpimg.imread(image_file)
plt.imshow(img)
plt.axis('off')
plt.title(caption)
plt.savefig(os.path.join(config.eval_result_dir,
image_name+'_result.jpg'))
fp = open(config.eval_result_file, 'w')
json.dump(results, fp)
fp.close()
# Evaluate these captions
eval_result_coco = eval_gt_coco.loadRes(config.eval_result_file)
scorer = COCOEvalCap(eval_gt_coco, eval_result_coco)
scorer.evaluate()
print("Evaluation complete.")
def test(self, sess, test_data, vocabulary):
""" Test the model using any given images. """
print("Testing the model ...")
config = self.config
if not os.path.exists(config.test_result_dir):
os.mkdir(config.test_result_dir)
captions = []
scores = []
# Generate the captions for the images
for k in tqdm(list(range(test_data.num_batches)), desc='path'):
batch = test_data.next_batch()
images = self.image_loader.load_images(batch)
caption_data,scores_data = sess.run([self.predictions,self.probs],feed_dict={self.images:images})
fake_cnt = 0 if k<test_data.num_batches-1 \
else test_data.fake_count
for l in range(test_data.batch_size-fake_cnt):
## self.predictions will return the indexes of words, we need to find the corresponding word from it.
word_idxs = caption_data[l]
## get_sentence will return a sentence till there is a end delimiter which is '.'
caption = vocabulary.get_sentence(word_idxs)
print(caption)
captions.append(caption)
scores.append(scores_data[l])
# Save the result in an image file
image_file = batch[l]
image_name = image_file.split(os.sep)[-1]
image_name = os.path.splitext(image_name)[0]
img = mpimg.imread(image_file)
plt.imshow(img)
plt.axis('off')
plt.title(caption)
plt.savefig(os.path.join(config.test_result_dir,
image_name+'_result.jpg'))
##Save the captions to a file
results = pd.DataFrame({'image_files':test_data.image_files,
'caption':captions,
'prob':scores})
results.to_csv(config.test_result_file)
print("Testing complete.")
def save(self):
""" Save the model. """
config = self.config
data = {v.name: v.eval() for v in tf.global_variables()}
save_path = os.path.join(config.save_dir, str(self.global_step.eval()))
print((" Saving the model to %s..." % (save_path+".npy")))
np.save(save_path, data)
info_file = open(os.path.join(config.save_dir, "config.pickle"), "wb")
config_ = copy.copy(config)
config_.global_step = self.global_step.eval()
pickle.dump(config_, info_file)
info_file.close()
print("Model saved.")
def load(self, sess, model_file=None):
""" Load the model. """
config = self.config
if model_file is not None:
save_path = model_file
else:
info_path = os.path.join(config.save_dir, "config.pickle")
info_file = open(info_path, "rb")
config = pickle.load(info_file)
global_step = config.global_step
info_file.close()
save_path = os.path.join(config.save_dir,
str(global_step)+".npy")
print("Loading the model from %s..." %save_path)
data_dict = np.load(save_path).item()
count = 0
for v in tqdm(tf.global_variables()):
if v.name in data_dict.keys():
sess.run(v.assign(data_dict[v.name]))
count += 1
print("%d tensors loaded." %count)
def load_cnn(self, session, data_path, ignore_missing=True):
""" Load a pretrained CNN model. """
print("All variables present...")
for var in tf.all_variables():
print(var)
with tf.variable_scope('conv1_1',reuse = True):
kernel = tf.get_variable('conv1_1_W')
print("Loading the CNN from %s..." %data_path)
data_dict = np.load(data_path,encoding='latin1')
count = 0
for param_name in tqdm(data_dict.keys()):
op_name = param_name[:-2]
print(param_name)
#print(op_name)
with tf.variable_scope(op_name, reuse = True):
try:
var = tf.get_variable(param_name)
session.run(var.assign(data_dict[param_name]))
count += 1
except ValueError:
print("No such variable")
pass
print("%d tensors loaded." %count)