-
Notifications
You must be signed in to change notification settings - Fork 27
/
deconvolveCa.m
355 lines (341 loc) · 13.7 KB
/
deconvolveCa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
function [c, s, options] = deconvolveCa(y, varargin)
%% infer the most likely discretized spike train underlying an fluorescence trace
%% Solves mutliple formulation of the problem
% 1) FOOPSI,
% mininize_{c,s} 1/2 * norm(y-c,2)^2 + lambda * norm(s,1)
% subject to c>=0, s>=0, s=Gc
% 2) constrained FOOPSI
% minimize_{c,s} norm(s, q)
% subject to norm(y-c,2) <= sn*sqrt(T), c>=0, s>=0, s=Gc
% where q is either 1 or 0, rendering the problem convex or non-convex.
% 3) hard threshrinkage
% minimize_{c,s} 1/2 * norm(y-c, 2)^2
% subjec to c>=0, s=Gc, s=0 or s>=smin
% 4) Nonnegative least square problem (NNLS)
% min_{s} norm(y - s*h, 2)^2 + lambda * norm(s,1)
% subject to s>=0
%% inputs:
% y: T x 1 vector, fluorescence trace
% varargin: variable input arguments
% type: string, defines the model of the deconvolution kernel. possible
% options are:
% 'ar1': auto-regressive model with order p=1
% 'ar2': auto-regressive model with order p=2
% 'exp2': the convolution kernel is modeled as the difference of two
% exponential functions -
% h(t) = (exp(-t/tau_d) - exp(-t/tau_r)) / (tau_d-tau_r)
% 'kernel': a vector of the convolution kernel
% pars: parameters for the specified convolution kernel. it has
% different shapes for differrent types of the convolution model:
% 'ar1': scalar
% 'ar2': 2 x 1 vector, [r_1, r_2]
% 'exp2': 2 x 1 vector, [tau_r, tau_d]
% 'kernel': maxISI x 1 vector, the kernel.
% sn: scalar, standard deviation of the noise distribution. If no
% values is give, then sn is estimated from the data based on power
% spectual density method.
% b: fluorescence baseline vlaues. default is 0
% optimize_pars: estimate the parameters of the convolution kernel. default: 0
% optimize_b: estimate the baseline. default: 0
% lambda: penalty parameter
% method: methods for running deconvolution. {'foopsi',
% 'constrained_foopsi' (default), 'thresholded'},
%% outputs:
% c: T x 1 vector, denoised trace
% s: T x 1 vector, deconvolved signal
% b: fluorescence baseline
% kernel: struct variable containing the parameters for the selected
% convolution model
% lambda: Optimal Lagrange multiplier for noise constraint under L1 penalty
% """olves the noise constrained sparse nonnegat
%% Authors: Pengcheng Zhou, Carnegie Mellon University, 2016
% ported from the Python implementation from Johannes Friedrich
%% References
% Friedrich J et.al., NIPS 2016, Fast Active Set Method for Online Spike Inference from Calcium Imaging
%% input arguments
y = reshape(y, [], 1); % reshape the trace as a vector
options = parseinputs(varargin{:}); % parse input arguments
if isempty(y)
c = []; s = [];
return;
end
win = options.window; % length of the convolution kernel
% estimate the noise
if isempty(options.sn)
options.sn = GetSn(y);
end
% estimate time constant
if isempty(options.pars) || all(options.pars==0)
switch options.type
case 'ar1'
try
options.pars = estimate_time_constant(y, 1, options.sn);
catch
c = y*0;
s = c;
fprintf('fail to deconvolve the trace\n');
return;
end
if length(options.pars)~=1
c = zeros(size(y));
s = zeros(size(y));
options.pars = 0;
return;
end
case 'ar2'
options.pars = estimate_time_constant(y, 2, options.sn);
if length(options.pars)~=2
c = zeros(size(y));
s = zeros(size(y));
options.pars =[0,0];
return;
end
case 'exp2'
g = estimate_time_constant(y, 2, options.sn);
options.pars = ar2exp(g);
case 'kernel'
g = estimate_time_constant(y, 2, options.sn);
taus = ar2exp(g);
options.pars = exp2kernel(taus, options.win); % convolution kernel
end
end
%% run deconvolution
c = y;
s = y;
b0 = options.b;
switch lower(options.method)
case 'foopsi' %% use FOOPSI
if strcmpi(options.type, 'ar1') % AR 1
if options.smin<0
options.smin = abs(options.smin)*options.sn;
end
gmax = exp(-1/options.max_tau);
[c, s, options.b, options.pars] = foopsi_oasisAR1(y-b0, options.pars, options.lambda, ...
options.smin, options.optimize_b, options.optimize_pars, [], options.maxIter, ...
options.tau_range, gmax);
options.b = options.b + b0;
elseif strcmpi(options.type, 'ar2') % AR 2
if options.smin<0
options.smin = abs(options.smin)*options.sn/max_ht(options.pars);
end
[c, s, options.b, options.pars] = foopsi_oasisAR2(y-b0, options.pars, options.lambda, ...
options.smin);
options.b = options.b + b0;
elseif strcmpi(options.type, 'exp2') % difference of two exponential functions
kernel = exp2kernel(options.pars, options.window);
[c, s] = onnls(y-b0, kernel, options.lambda, ...
options.shift, options.window);
elseif strcmpi(options.type, 'kernel') % convolution kernel itself
[c, s] = onnls(y-b0, options.pars, options.lambda, ...
options.shift, options.window);
else
disp('to be done');
end
case 'constrained'
if strcmpi(options.type, 'ar1') % AR1
[c, s, options.b, options.pars, options.lambda] = constrained_oasisAR1(y,...
options.pars, options.sn, options.optimize_b, options.optimize_pars, ...
[], options.maxIter, options.tau_range);
else
[cc, options.b, c1, options.pars, options.sn, s] = constrained_foopsi(y,[],[],options.pars,options.sn, ...
options.extra_params);
gd = max(roots([1,-options.pars'])); % decay time constant for initial concentration
gd_vec = gd.^((0:length(y)-1));
c = cc(:) + c1*gd_vec';
options.cin = c1;
end
case 'thresholded' %% Use hard-shrinkage method
if strcmpi(options.type, 'ar1')
[c, s, options.b, options.pars, options.smin] = thresholded_oasisAR1(y,...
options.pars, options.sn, options.optimize_b, options.optimize_pars, ...
[], options.maxIter, options.thresh_factor, options.p_noise, ...
options.tau_range);
% if and(options.smin==0, options.optimize_smin) % smin is given
% [c, s, options.b, options.pars, options.smin] = thresholded_oasisAR1(y,...
% options.pars, options.sn, options.optimize_b, options.optimize_pars, ...
% [], options.maxIter, options.thresh_factor);
% else
% [c, s] = oasisAR1(y-b0, options.pars, options.lambda, ...
% options.smin);
% end
elseif strcmpi(options.type, 'ar2')
[c, s, options.b, options.pars, options.smin] = thresholded_oasisAR2(y,...
options.pars, options.sn, options.smin, options.optimize_b, options.optimize_pars, ...
[], options.maxIter, options.thresh_factor);
% if and(options.smin==0, options.optimize_smin) % smin is given
% [c, s, options.b, options.pars, options.smin] = thresholded_oasisAR2(y,...
% options.pars, options.sn, options.optimize_b, options.optimize_pars, ...
% [], options.maxIter, options.thresh_factor);
% else
% [c, s] = oasisAR2(y-b0, options.pars, options.lambda, ...
% options.smin);
% end
elseif strcmpi(options.type, 'exp2') % difference of two exponential functions
d = options.pars(1);
r = options.pars(2);
options.pars = (exp(log(d)*(1:win)) - exp(log(r)*(1:win))) / (d-r); % convolution kernel
[c, s] = onnls(y-b0, options.pars, options.lambda, ...
options.shift, options.window, [], [], [], options.smin);
elseif strcmpi(options.type, 'kernel') % convolution kernel itself
[c, s] = onnls(y-b0, options.pars, options.lambda, ...
options.shift, options.window, [], [], [], options.smin);
else
disp('to be done');
end
case 'mcmc'
SAMP = cont_ca_sampler(y,options.extra_params);
options.extra_params = SAMP;
options.mcmc_results = SAMP;
plot_continuous_samples(SAMP,y);
end
% deal with large residual
if options.remove_large_residuals && strcmpi(options.method, 'foopsi')
ind = (abs(fastsmooth(y-c, 3))>options.smin) & (c>options.smin*5);
c(ind) = max(0, y(ind));
end
% avoid nan output
c(isnan(c) | isinf(c)) = 0;
function options=parseinputs(varargin)
%% parse input variables
%% default options
options.type = 'ar1';
options.pars = [];
options.sn = [];
options.b = 0;
options.lambda = 0;
options.optimize_b = false;
options.optimize_pars = false;
options.optimize_smin = false;
options.method = 'constrained';
options.window = 200;
options.shift = 100;
options.smin = 0;
options.maxIter = 10;
options.thresh_factor = 1.0;
options.extra_params = [];
options.p_noise = 0.9999;
options.max_tau = 100;
options.tau_range = [];
options.remove_large_residuals = false;
if isempty(varargin)
return;
elseif isstruct(varargin{1}) && ~isempty(varargin{1})
tmp_options = varargin{1};
field_nams = fieldnames(tmp_options);
for m=1:length(field_nams)
eval(sprintf('options.%s=tmp_options.%s;', field_nams{m}, field_nams{m}));
end
k = 2;
else
k = 1;
end
%% parse all input arguments
while k<=nargin
if isempty(varargin{k})
k = k+1;
end
switch lower(varargin{k})
case {'ar1', 'ar2', 'exp2', 'kernel'}
% convolution kernel type
options.type = lower(varargin{k});
if (k<nargin) && (isnumeric(varargin{k+1}))
options.pars = varargin{k+1};
k = k + 1;
end
k = k + 1;
case 'pars'
% parameters for the kernel
options.pars = varargin{k+1};
k = k+2;
case 'sn'
% noise
options.sn = varargin{k+1};
k = k+2;
case 'b'
% baseline
options.b = varargin{k+1};
k = k+2;
case 'optimize_b'
% optimize the baseline
options.optimize_b = true;
if (k<nargin) && (islogical(varargin{k+1}))
options.optimize_b = varargin{k+1};
k = k + 1;
end
k = k+1;
case 'optimize_pars'
% optimize the parameters of the convolution kernel
options.optimize_pars = true;
if (k<nargin) && (islogical(varargin{k+1}))
options.optimize_pars = varargin{k+1};
k = k+1;
end
k = k + 1;
case 'optimize_smin'
% optimize the parameters of the convolution kernel
options.optimize_smin = true;
if (k<nargin) && (islogical(varargin{k+1}))
options.optimize_smin = varargin{k+1};
k = k+1;
end
k = k+1;
case 'lambda'
% penalty
options.lambda = varargin{k+1};
k = k+2;
case {'foopsi', 'constrained', 'thresholded', 'mcmc'}
% method for running the deconvolution
options.method = lower(varargin{k});
k = k+1;
if strcmpi(options.method, 'mcmc') && (k<=length(varargin)) && (~ischar(varargin{k}))
options.extra_params = varargin{k};
k = k+1;
end
case 'window'
% maximum length of the kernel
options.window = varargin{k+1};
k = k+2;
case 'shift'
% number of frames by which to shift window from on run of NNLS
% to the next
options.shift = varargin{k+1};
k = k+2;
case 'smin'
% number of frames by which to shift window from on run of NNLS
% to the next
options.smin = varargin{k+1};
k = k+2;
case 'maxiter'
% number of frames by which to shift window from on run of NNLS
% to the next
options.maxIter = varargin{k+1};
k = k+2;
case 'thresh_factor'
% number of frames by which to shift window from on run of NNLS
% to the next
options.thresh_factor = varargin{k+1};
k = k+2;
case 'p_noise'
% number of frames by which to shift window from on run of NNLS
% to the next
options.p_noise = varargin{k+1};
k = k+2;
case 'tau_range'
options.tau_range = varargin{k+1};
k = k+2;
case 'remove_large_residuals'
% remove large residuals by setting c(t) = y(t)
options.remove_large_residuals = true;
if (k<nargin) && (islogical(varargin{k+1}))
options.remove_large_residuals = varargin{k+1};
k = k+1;
end
k = k+1;
otherwise
k = k+1;
end
end
%% correct some wrong inputs
if strcmpi(options.type, 'kernel')
options.window = numel(options.pars);
end