-
First, you can install the required environments as illustrated in the Swin repository or follow the instructions below:
# Create virtual env conda create -n spvit-swin python=3.7 -y conda activate spvit-swin # Install PyTorch conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 -c pytorch pip install timm==0.3.2 # Install Apex git clone https://github.com/NVIDIA/apex cd apex pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ # Install other requirements: pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8
-
Next, install some other dependencies that are required by SPViT:
pip install tensorboardX tensorboard
-
Please refer to the Swin repository to prepare the standard ImageNet dataset, then link the ImageNet dataset under the
dataset
folder:$ tree dataset imagenet ├── train │ ├── class1 │ │ ├── img1.jpeg │ │ ├── img2.jpeg │ │ └── ... │ ├── class2 │ │ ├── img3.jpeg │ │ └── ... │ └── ... └── val ├── class1 │ ├── img4.jpeg │ ├── img5.jpeg │ └── ... ├── class2 │ ├── img6.jpeg │ └── ... └── ...
-
We start searching and fine-tuneing both from the pre-trained models.
-
Since we provide training scripts for three Swin models: Swin-T, Swin-S and Swin-B, please download the corresponding three pre-trained models from the Swin repository as well.
-
Next, move the downloaded pre-trained models into the following file structure:
$ tree model ├── swin_base_patch4_window7_224.pth ├── swin_small_patch4_window7_224.pth ├── swin_tiny_patch4_window7_224.pth
-
Note that do not change the filenames for the pre-trained models as we hard-coded these filenames when tailoring and loading the pre-trained models. Feel free to modify the hard-coded parts when pruning from other pre-trained models.
To search architectures with SPViT-Swin-T, run:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_tn_l28_t32_search.yaml --resume model/swin_tiny_patch4_window7_224.pth
To search architectures with SPViT-Swin-S, run:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_sm_l04_t55_search.yaml --resume model/swin_small_patch4_window7_224.pth
To search architectures with SPViT-Swin-B, run:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_bs_l01_t100_search.yaml --resume model/swin_base_patch4_window7_224.pth
You can start fine-tuning from either your own searched architectures or from our provided architectures by modifying and assigning the MSA indicators in assigned_indicators
and the FFN indicators in searching_model
.
To fine-tune architectures searched by SPViT-Swin-T, run:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_tn_l28_t32_ft.yaml --resume model/swin_tiny_patch4_window7_224.pth
To fine-tune the architectures with SPViT-Swin-S, run:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_sm_l04_t55_ft.yaml --resume model/swin_small_patch4_window7_224.pth
To fine-tune the architectures with SPViT-Swin-B, run:
python -m torch.distributed.launch --nproc_per_node 8 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_bs_l01_t100_ft.yaml --resume model/swin_base_patch4_window7_224.pth
We provide several examples for evaluating pre-trained SPViT models.
To evaluate SPViT-Swin-T pre-trained models, run:
python -m torch.distributed.launch --nproc_per_node 1 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_tn_l28_t32_ft.yaml --resume [PRE-TRAINED MODEL PATH] --opts EVAL_MODE True
To evaluate SPViT-Swin-S pre-trained models, run:
python -m torch.distributed.launch --nproc_per_node 1 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_sm_l04_t55_ft.yaml --resume [PRE-TRAINED MODEL PATH] --opts EVAL_MODE True
To evaluate SPViT-Swin-B pre-trained models, run:
python -m torch.distributed.launch --nproc_per_node 1 --master_port 3132 main_pruning.py --cfg configs/spvit_swin_bs_l01_t100_ft.yaml --resume [PRE-TRAINED MODEL PATH] --opts EVAL_MODE True
After fine-tuning, you can optimize your checkpoint to a smaller size with the following code:
python post_training_optimize_checkpoint.py YOUR_CHECKPOINT_PATH
The optimized checkpoint can be evaluated by replacing UnifiedWindowAttention
with UnifiedWindowAttentionParamOpt
and we have provided an example below:
main_pruning.py
--cfg
configs/spvit_swin_tn_l28_t32_ft_dist.yaml
--resume
model/spvit_swin_t_l28_t32_dist_optimized.pth
--opts
EVAL_MODE
True
EXTRA.attention_type
UnifiedWindowAttentionParamOpt
--local_rank
0
- [x] Release code.
- [x] Release pre-trained models.