-
Notifications
You must be signed in to change notification settings - Fork 129
/
pytorch_MNIST_cDCGAN.py
300 lines (243 loc) · 9.53 KB
/
pytorch_MNIST_cDCGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os, time
import matplotlib.pyplot as plt
import itertools
import pickle
import imageio
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
# G(z)
class generator(nn.Module):
# initializers
def __init__(self, d=128):
super(generator, self).__init__()
self.deconv1_1 = nn.ConvTranspose2d(100, d*2, 4, 1, 0)
self.deconv1_1_bn = nn.BatchNorm2d(d*2)
self.deconv1_2 = nn.ConvTranspose2d(10, d*2, 4, 1, 0)
self.deconv1_2_bn = nn.BatchNorm2d(d*2)
self.deconv2 = nn.ConvTranspose2d(d*4, d*2, 4, 2, 1)
self.deconv2_bn = nn.BatchNorm2d(d*2)
self.deconv3 = nn.ConvTranspose2d(d*2, d, 4, 2, 1)
self.deconv3_bn = nn.BatchNorm2d(d)
self.deconv4 = nn.ConvTranspose2d(d, 1, 4, 2, 1)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input, label):
x = F.relu(self.deconv1_1_bn(self.deconv1_1(input)))
y = F.relu(self.deconv1_2_bn(self.deconv1_2(label)))
x = torch.cat([x, y], 1)
x = F.relu(self.deconv2_bn(self.deconv2(x)))
x = F.relu(self.deconv3_bn(self.deconv3(x)))
x = F.tanh(self.deconv4(x))
# x = F.relu(self.deconv4_bn(self.deconv4(x)))
# x = F.tanh(self.deconv5(x))
return x
class discriminator(nn.Module):
# initializers
def __init__(self, d=128):
super(discriminator, self).__init__()
self.conv1_1 = nn.Conv2d(1, d/2, 4, 2, 1)
self.conv1_2 = nn.Conv2d(10, d/2, 4, 2, 1)
self.conv2 = nn.Conv2d(d, d*2, 4, 2, 1)
self.conv2_bn = nn.BatchNorm2d(d*2)
self.conv3 = nn.Conv2d(d*2, d*4, 4, 2, 1)
self.conv3_bn = nn.BatchNorm2d(d*4)
self.conv4 = nn.Conv2d(d * 4, 1, 4, 1, 0)
# weight_init
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
# forward method
def forward(self, input, label):
x = F.leaky_relu(self.conv1_1(input), 0.2)
y = F.leaky_relu(self.conv1_2(label), 0.2)
x = torch.cat([x, y], 1)
x = F.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
x = F.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
x = F.sigmoid(self.conv4(x))
return x
def normal_init(m, mean, std):
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
m.weight.data.normal_(mean, std)
m.bias.data.zero_()
# fixed noise & label
temp_z_ = torch.randn(10, 100)
fixed_z_ = temp_z_
fixed_y_ = torch.zeros(10, 1)
for i in range(9):
fixed_z_ = torch.cat([fixed_z_, temp_z_], 0)
temp = torch.ones(10, 1) + i
fixed_y_ = torch.cat([fixed_y_, temp], 0)
fixed_z_ = fixed_z_.view(-1, 100, 1, 1)
fixed_y_label_ = torch.zeros(100, 10)
fixed_y_label_.scatter_(1, fixed_y_.type(torch.LongTensor), 1)
fixed_y_label_ = fixed_y_label_.view(-1, 10, 1, 1)
fixed_z_, fixed_y_label_ = Variable(fixed_z_.cuda(), volatile=True), Variable(fixed_y_label_.cuda(), volatile=True)
def show_result(num_epoch, show = False, save = False, path = 'result.png'):
G.eval()
test_images = G(fixed_z_, fixed_y_label_)
G.train()
size_figure_grid = 10
fig, ax = plt.subplots(size_figure_grid, size_figure_grid, figsize=(5, 5))
for i, j in itertools.product(range(size_figure_grid), range(size_figure_grid)):
ax[i, j].get_xaxis().set_visible(False)
ax[i, j].get_yaxis().set_visible(False)
for k in range(10*10):
i = k // 10
j = k % 10
ax[i, j].cla()
ax[i, j].imshow(test_images[k, 0].cpu().data.numpy(), cmap='gray')
label = 'Epoch {0}'.format(num_epoch)
fig.text(0.5, 0.04, label, ha='center')
plt.savefig(path)
if show:
plt.show()
else:
plt.close()
def show_train_hist(hist, show = False, save = False, path = 'Train_hist.png'):
x = range(len(hist['D_losses']))
y1 = hist['D_losses']
y2 = hist['G_losses']
plt.plot(x, y1, label='D_loss')
plt.plot(x, y2, label='G_loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(loc=4)
plt.grid(True)
plt.tight_layout()
if save:
plt.savefig(path)
if show:
plt.show()
else:
plt.close()
# training parameters
batch_size = 128
lr = 0.0002
train_epoch = 20
# data_loader
img_size = 32
transform = transforms.Compose([
transforms.Scale(img_size),
transforms.ToTensor(),
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True, transform=transform),
batch_size=batch_size, shuffle=True)
# network
G = generator(128)
D = discriminator(128)
G.weight_init(mean=0.0, std=0.02)
D.weight_init(mean=0.0, std=0.02)
G.cuda()
D.cuda()
# Binary Cross Entropy loss
BCE_loss = nn.BCELoss()
# Adam optimizer
G_optimizer = optim.Adam(G.parameters(), lr=lr, betas=(0.5, 0.999))
D_optimizer = optim.Adam(D.parameters(), lr=lr, betas=(0.5, 0.999))
# results save folder
root = 'MNIST_cDCGAN_results/'
model = 'MNIST_cDCGAN_'
if not os.path.isdir(root):
os.mkdir(root)
if not os.path.isdir(root + 'Fixed_results'):
os.mkdir(root + 'Fixed_results')
train_hist = {}
train_hist['D_losses'] = []
train_hist['G_losses'] = []
train_hist['per_epoch_ptimes'] = []
train_hist['total_ptime'] = []
# label preprocess
onehot = torch.zeros(10, 10)
onehot = onehot.scatter_(1, torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).view(10,1), 1).view(10, 10, 1, 1)
fill = torch.zeros([10, 10, img_size, img_size])
for i in range(10):
fill[i, i, :, :] = 1
print('training start!')
start_time = time.time()
for epoch in range(train_epoch):
D_losses = []
G_losses = []
# learning rate decay
if (epoch+1) == 11:
G_optimizer.param_groups[0]['lr'] /= 10
D_optimizer.param_groups[0]['lr'] /= 10
print("learning rate change!")
if (epoch+1) == 16:
G_optimizer.param_groups[0]['lr'] /= 10
D_optimizer.param_groups[0]['lr'] /= 10
print("learning rate change!")
epoch_start_time = time.time()
y_real_ = torch.ones(batch_size)
y_fake_ = torch.zeros(batch_size)
y_real_, y_fake_ = Variable(y_real_.cuda()), Variable(y_fake_.cuda())
for x_, y_ in train_loader:
# train discriminator D
D.zero_grad()
mini_batch = x_.size()[0]
if mini_batch != batch_size:
y_real_ = torch.ones(mini_batch)
y_fake_ = torch.zeros(mini_batch)
y_real_, y_fake_ = Variable(y_real_.cuda()), Variable(y_fake_.cuda())
y_fill_ = fill[y_]
x_, y_fill_ = Variable(x_.cuda()), Variable(y_fill_.cuda())
D_result = D(x_, y_fill_).squeeze()
D_real_loss = BCE_loss(D_result, y_real_)
z_ = torch.randn((mini_batch, 100)).view(-1, 100, 1, 1)
y_ = (torch.rand(mini_batch, 1) * 10).type(torch.LongTensor).squeeze()
y_label_ = onehot[y_]
y_fill_ = fill[y_]
z_, y_label_, y_fill_ = Variable(z_.cuda()), Variable(y_label_.cuda()), Variable(y_fill_.cuda())
G_result = G(z_, y_label_)
D_result = D(G_result, y_fill_).squeeze()
D_fake_loss = BCE_loss(D_result, y_fake_)
D_fake_score = D_result.data.mean()
D_train_loss = D_real_loss + D_fake_loss
D_train_loss.backward()
D_optimizer.step()
D_losses.append(D_train_loss.data[0])
# train generator G
G.zero_grad()
z_ = torch.randn((mini_batch, 100)).view(-1, 100, 1, 1)
y_ = (torch.rand(mini_batch, 1) * 10).type(torch.LongTensor).squeeze()
y_label_ = onehot[y_]
y_fill_ = fill[y_]
z_, y_label_, y_fill_ = Variable(z_.cuda()), Variable(y_label_.cuda()), Variable(y_fill_.cuda())
G_result = G(z_, y_label_)
D_result = D(G_result, y_fill_).squeeze()
G_train_loss = BCE_loss(D_result, y_real_)
G_train_loss.backward()
G_optimizer.step()
G_losses.append(G_train_loss.data[0])
epoch_end_time = time.time()
per_epoch_ptime = epoch_end_time - epoch_start_time
print('[%d/%d] - ptime: %.2f, loss_d: %.3f, loss_g: %.3f' % ((epoch + 1), train_epoch, per_epoch_ptime, torch.mean(torch.FloatTensor(D_losses)),
torch.mean(torch.FloatTensor(G_losses))))
fixed_p = root + 'Fixed_results/' + model + str(epoch + 1) + '.png'
show_result((epoch+1), save=True, path=fixed_p)
train_hist['D_losses'].append(torch.mean(torch.FloatTensor(D_losses)))
train_hist['G_losses'].append(torch.mean(torch.FloatTensor(G_losses)))
train_hist['per_epoch_ptimes'].append(per_epoch_ptime)
end_time = time.time()
total_ptime = end_time - start_time
train_hist['total_ptime'].append(total_ptime)
print("Avg one epoch ptime: %.2f, total %d epochs ptime: %.2f" % (torch.mean(torch.FloatTensor(train_hist['per_epoch_ptimes'])), train_epoch, total_ptime))
print("Training finish!... save training results")
torch.save(G.state_dict(), root + model + 'generator_param.pkl')
torch.save(D.state_dict(), root + model + 'discriminator_param.pkl')
with open(root + model + 'train_hist.pkl', 'wb') as f:
pickle.dump(train_hist, f)
show_train_hist(train_hist, save=True, path=root + model + 'train_hist.png')
images = []
for e in range(train_epoch):
img_name = root + 'Fixed_results/' + model + str(e + 1) + '.png'
images.append(imageio.imread(img_name))
imageio.mimsave(root + model + 'generation_animation.gif', images, fps=5)