Skip to content

Latest commit

 

History

History
54 lines (29 loc) · 1.48 KB

README.md

File metadata and controls

54 lines (29 loc) · 1.48 KB

Please make sure you work in GLOBAL $HOME and not $SCRACH

On the login node (zohim@login19:~>) in Perlmutter, run the following commands:

  1. Pull the latest image:

shifterimg pull nvcr.io/nvidia/nightly/cuda-quantum:cu11-latest

  1. Enter the image to add some configuration:

shifter --image=docker:nvcr.io/nvidia/nightly/cuda-quantum:cu11-latest --module=cuda-mpich /bin/bash

  1. Copy over the distributed_interfaces folder:

cp -r /opt/nvidia/cudaq/distributed_interfaces/ .

3.5. Pip install any packages you would like

  1. Exit the image:

exit

  1. Activate the native MPI plguin
export MPI_PATH=/opt/cray/pe/mpich/8.1.27/ofi/gnu/9.1
source distributed_interfaces/activate_custom_mpi.sh

Make sure the distributed_interfaces folder from step 5 above is in home directory.

  1. Verify the successful creation of the local library and environment variable:

echo $CUDAQ_MPI_COMM_LIB

  1. Shifter into the container again and copy some files:
shifter --image=docker:nvcr.io/nvidia/nightly/cuda-quantum:cu11-latest --module=cuda-mpich /bin/bash

cp /usr/local/cuda/targets/x86_64-linux/lib/libcudart.so.11.8.89 ~/libcudart.so

exit

Now you have all the settings required to run CUDA-Q on multiple nodes on Perlmutter.

Create a .py file you would like to execute and a jobscript.sh file. See examples of these in the repo.

Execute the job via sbatch jobscript.sh on terminal.

The output will be a slurm-jobid.out file, an example of which is also in the repo.