-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathDatasetGenerator.py
65 lines (38 loc) · 1.98 KB
/
DatasetGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import numpy as np
from PIL import Image
import torch
from torch.utils.data import Dataset
#--------------------------------------------------------------------------------
class DatasetGenerator (Dataset):
#--------------------------------------------------------------------------------
def __init__ (self, pathImageDirectory, pathDatasetFile, transform):
self.listImagePaths = []
self.listImageLabels = []
self.transform = transform
#---- Open file, get image paths and labels
fileDescriptor = open(pathDatasetFile, "r")
#---- get into the loop
line = True
while line:
line = fileDescriptor.readline()
#--- if not empty
if line:
lineItems = line.split()
imagePath = os.path.join(pathImageDirectory, lineItems[0])
imageLabel = lineItems[1:]
imageLabel = [int(i) for i in imageLabel]
self.listImagePaths.append(imagePath)
self.listImageLabels.append(imageLabel)
fileDescriptor.close()
#--------------------------------------------------------------------------------
def __getitem__(self, index):
imagePath = self.listImagePaths[index]
imageData = Image.open(imagePath).convert('RGB')
imageLabel= torch.FloatTensor(self.listImageLabels[index])
if self.transform != None: imageData = self.transform(imageData)
return imageData, imageLabel
#--------------------------------------------------------------------------------
def __len__(self):
return len(self.listImagePaths)
#--------------------------------------------------------------------------------