-
Notifications
You must be signed in to change notification settings - Fork 23
/
human_play.py
59 lines (41 loc) · 1.51 KB
/
human_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from game import Board, Game
from tf_policy_value_net import PolicyValueNet
from mcts_alphaZero import MCTSPlayer
class Human(object):
"""
human player
"""
def __init__(self):
self.player = None
def set_player_ind(self, p):
self.player = p
def get_action(self, board):
try:
location = input("Your move: ")
if isinstance(location, str):
location = [int(n, 10) for n in location.split(",")] # for python3
move = board.location_to_move(location)
except Exception as e:
move = -1
if move == -1 or move not in board.availables:
print("invalid move")
move = self.get_action(board)
return move
def __str__(self):
return "Human {}".format(self.player)
def run():
n_row = 5
width, height = 11, 11
try:
board = Board(width=width, height=height, n_in_row=n_row)
game = Game(board)
################ human VS AI ###################
best_policy = PolicyValueNet(width, height, n_row)
mcts_player = MCTSPlayer(best_policy.policy_value_fn, c_puct=5, n_playout=400) # set larger n_playout for better performance
human = Human()
# set start_player=0 for human first
game.start_play(human, mcts_player, start_player=1, is_shown=1)
except KeyboardInterrupt:
print('\n\rquit')
if __name__ == '__main__':
run()