-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_function_kwai.py
308 lines (287 loc) · 17 KB
/
main_function_kwai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# -*- coding: utf-8 -*-
"""
This is the version for search hyper-parameters by using the package Ray.
you need install it with pip
"""
from operator import pos
from re import A, S
import os
from typing import Dict, List
from deepctr_torch.layers.interaction import BiInteractionPooling
import numpy as np
from numpy.core.defchararray import index
from numpy.lib.type_check import real
import pandas as pd
from pandas.core.algorithms import isin
import torch
from sklearn.preprocessing import LabelEncoder, MinMaxScaler
from torch.nn.modules import linear
from torch.nn.parameter import Parameter
from tqdm import tqdm
from deepctr_torch.inputs import SparseFeat, DenseFeat, get_feature_names
from deepctr_torch.models.deepfm import *
# from deepctr_torch.models.basemodel import *
from basemodel_ours import *
from deepctr_torch.callbacks import EarlyStopping
import time
import argparse
import math
from torch.utils.tensorboard import SummaryWriter
from ray import tune
from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler
from ipw_nfm import ipw_myNFM
from utils import metrics
from decfair_tune import FastFairNFM
from baseline_tune import DeepNFM, NFM, MyDeepFM, MyFM, DeepFM, FM_witout_FirstOrder
from counterfactual_reasoning import CR_NFM
from pre_data_wechat import *
from FairGo import myNFM,FairGo
from ipw_nfm import ipw_myNFM
# from decfair_tune_nfm import DCR_NFM,DCR_NFM_apr
# path
ROOT_PATH = "/home/zyang/code-2021/decFair/data/"
# #
class parameters(object):
def __init__(self) -> None:
super().__init__()
self.lr = 1e-3
self.reg_emb = 1e-6
self.reg_para = 1e-2
self.dim = 16
self.batch_size=1024
self.epoch = 100
self.use_videolen = 0
self.patience = 10
self.use_codelen = 1
self.model= 'fastFairNFM' # 'NFM'
self.post_action='like' #comment
self.stop_refer = 'val_do_ndcg_post10'
self.opt = 'adagrad'
self.pretrain = 0
self.alpha = 0
self.cuda=0
self.pretrained_model="/data/zyang/decFair/logs/best-kwai-adagrad-myNFM-vl-0-vc-1-like-myNFM-lr_0.01-reg_emb_0.001-reg_para_0-dim_16-stop-val_ndcg_post10-auxloss-1.0-stop-val_ndcg_post10-m.pth"
def reset(self, config:Dict):
for name,val in config.items():
setattr(self,name,val)
def change_columns_name(columns_name,uname='user_id',iname='item_id'):
index_u = columns_name.index(uname)
columns_name[index_u] = 'user_id'
index_i = columns_name.index(iname)
columns_name[index_i] = 'item_id'
return columns_name
def run_a_model(config,need_train=True):
dataset='kwai'
print("dataset:",dataset)
args = parameters()
args.reset(config)
used_optimizer = args.opt
lr = args.lr
post_action = args.post_action # the label for testing the deconfouded results
save_name = dataset + "ipwmax_" + used_optimizer+"-"+args.model+"-vl-"+str(args.use_videolen)+'-vc-'+str(args.use_codelen)+'-' + post_action + '-' + args.model+"-lr_{}-reg_emb_{}-reg_para_{}-dim_{}-stop-{}-auxloss-{}".format(args.lr,args.reg_emb, args.reg_para, args.dim, args.stop_refer,args.alpha)+"-stop-"+args.stop_refer+'-train-'+str(need_train)
log_file_path = "/home/zyang/code-2021/decFair/logs/"+dataset+'/'+ save_name + ".txt"
log_file = open(log_file_path,'wt')
FEA_FEED_LIST = ['item_id','duration_time'] #['item_id','bgm_song_id','bgm_singer_id',"videoplayseconds"]
print("FEA_FEED_LIST:", FEA_FEED_LIST, file=log_file)
print("**** post_action:", post_action, file=log_file)
# length_name = 'videoplayseconds'
length_name = 'duration_time' # "videoplayseconds"#
code_length_name = 'code_duration' # "code_videolen" #
item_name = 'item_id'
if args.use_videolen == 0: # not use any video length information
FEA_FEED_LIST = list(filter(lambda x: x!=length_name, FEA_FEED_LIST))
print("please make sure that the video length is not used, used features",FEA_FEED_LIST,file=log_file)
if args.use_codelen > 0:
FEA_FEED_LIST.append(code_length_name) # use the code lenght in FM
# submit = pd.read_csv(ROOT_PATH + '/coded_test_data.csv')[['userid', 'feedid']]
post_action = args.post_action # the label for testing the deconfouded results
print("**** post_action:", post_action,file=log_file)
for action in ['finish']: # ACTION_LIST: for training
train = pd.read_csv(ROOT_PATH + '/'+dataset+f'/final_train_data_for_{action}.csv')
print("origin columns:",train.columns,file=log_file)
valid = pd.read_csv(ROOT_PATH + '/'+dataset+f'/final_valid_data_for_{action}.csv')
test = pd.read_csv(ROOT_PATH + '/'+dataset+f'/final_test_data_for_{action}.csv')
# train = train.sample(frac=1, random_state=42).reset_index(drop=True)
train.columns = change_columns_name(train.columns.tolist(), uname='user_id', iname='item_id')
valid.columns = change_columns_name(valid.columns.tolist(), uname='user_id', iname='item_id')
test.columns = change_columns_name(test.columns.tolist(), uname='user_id', iname='item_id')
USE_FEAT = ['user_id', 'item_id', action, post_action] + FEA_FEED_LIST[1:]
train= train[USE_FEAT]
test = test[USE_FEAT]
valid = valid[USE_FEAT]
print("posi prop:",sum((train[action]==1)*1)/train.shape[0],file=log_file)
# print()
# test = pd.read_csv(ROOT_PATH + '/test_data.csv')[[i for i in USE_FEAT if i != action and i!=post_action]]
target = [action, post_action] # here we have two task, one for direct target and one post target
data = pd.concat((train, valid, test)).reset_index(drop=True)
if args.use_videolen>0:
dense_features = [length_name]
data[dense_features] = data[dense_features].fillna(0)
else:
dense_features = []
sparse_features = [i for i in USE_FEAT if i not in dense_features and i not in target]
data[sparse_features] = data[sparse_features].fillna(0)
# 2.count #unique features for each sparse field,and record dense feature field name
if args.use_videolen > 0:
print("use video length",file=log_file)
fixlen_feature_columns = [SparseFeat(feat, data[feat].nunique(),embedding_dim=args.dim)
for feat in sparse_features] + [DenseFeat(feat, 1, )
for feat in dense_features]
else: # not use video lenght information
print("not use video length",file=log_file)
fixlen_feature_columns = [SparseFeat(feat, data[feat].nunique(),embedding_dim=args.dim)
for feat in sparse_features]
dnn_feature_columns = fixlen_feature_columns
linear_feature_columns = fixlen_feature_columns
feature_names = get_feature_names(
linear_feature_columns + dnn_feature_columns)
# 3.generate input data for model
train, valid, test = data.iloc[:train.shape[0]].reset_index(drop=True), data.iloc[train.shape[0]:train.shape[0]+valid.shape[0]].reset_index(drop=True), data.iloc[train.shape[0]+valid.shape[0]:].reset_index(drop=True)
train_model_input = {name: train[name] for name in feature_names}
valid_model_input = {name: valid[name] for name in feature_names}
test_model_input = {name: test[name] for name in feature_names}
if args.model == 'FairNFM' or args.model =='fastFairNFM' or args.model=='CR_NFM' or args.model=='FairGo' or args.model=='ipw' or args.model=="DCR_NFM" or args.model=="ADCR_NFM":
confounder = code_length_name
assert confounder == feature_names[-1] # the confounder must be to place at the last column.
print("input features:",train_model_input.keys(),file=log_file)
# 4.Define Model,train,predict and evaluate
device = 'cpu'
use_cuda = True
if use_cuda and torch.cuda.is_available():
print('cuda ready...',file=log_file)
device = 'cuda:'+ str(args.cuda)
if args.model == 'deepFM':
used_model = MyDeepFM
elif args.model == 'deepNFM':
used_model = DeepNFM
elif args.model == 'NFM':
used_model = NFM
elif args.model == 'myNFM':
used_model = myNFM
elif args.model =='2FM':
used_model = FM_witout_FirstOrder
elif args.model =='FM':
used_model = MyFM
elif args.model =='CR_NFM':
used_model = CR_NFM
elif args.model == 'ipw':
used_model = ipw_myNFM
vlen_info = data.groupby(confounder).agg({'finish':'mean'})
con = vlen_info.index.values
proensity_pos = vlen_info.values
proensity_neg = 1 - proensity_pos
# proensity_pos = (proensity_pos/proensity_pos.sum())**0.5
# proensity_neg = (proensity_neg/proensity_neg.sum())**0.5
proensity_pos = (proensity_pos/proensity_pos.max())**0.5
proensity_neg = (proensity_neg/proensity_neg.max())**0.5
con_idx = np.argsort(con)
propensity_pos = proensity_pos[con_idx]
propensity_neg = proensity_neg[con_idx]
linear_feature_columns = list(filter(lambda x: x.name != confounder, linear_feature_columns))
dnn_feature_columns = list(filter(lambda x: x.name!= confounder, dnn_feature_columns))
# the confusing feature is not inputted for ipw
elif args.model == 'FairGo':
used_model = FairGo
confounder_num = data[confounder].unique().shape[0]
if args.use_codelen==0:
linear_feature_columns = list(filter(lambda x: x.name != confounder, linear_feature_columns))
dnn_feature_columns = list(filter(lambda x: x.name!= confounder, dnn_feature_columns))
elif args.model == 'FairNFM' or args.model =='fastFairNFM':
if args.model == 'FairNFM':
used_model = FairNFM
else:
used_model =FastFairNFM
confounder_num = data[confounder].unique().shape[0]
confounder_pd = train[[item_name,confounder]] #.drop_duplicates('feedid')
# confounder_total = train[confounder].values.reshape(-1)
_, confoudner_prob = np.unique(confounder_pd[confounder].values.reshape(-1),return_counts=True) # compute by the interaction
confoudner_prob = confoudner_prob * 1.0 / confoudner_prob.sum() # the probability
linear_feature_columns = list(filter(lambda x: x.name != confounder, linear_feature_columns))
dnn_feature_columns = list(filter(lambda x: x.name!= confounder, dnn_feature_columns)) # filter the confouder in the feature that model will utiliz
else:
print("don't have this type model:", args.model,fiel=log_file)
exit()
dnn_hidden_units = (256,128)
print("used model:",used_model,file=log_file)
# creat model based on args
if args.model == 'FairNFM' or args.model =='fastFairNFM': # DCR-MOE
model = used_model(linear_feature_columns=linear_feature_columns, dnn_hidden_units=dnn_hidden_units, dnn_feature_columns=dnn_feature_columns,
task='binary', l2_reg_embedding=args.reg_emb, device=device, l2_reg_dnn=args.reg_para,
l2_reg_linear=args.reg_para,emb_dim=args.dim,confounder_num=confounder_num,confounder_name=confounder,confounder_prob=confoudner_prob)
elif args.model == 'CR_NFM': # CR
# print("load pretrained model...")
model = used_model(linear_feature_columns=linear_feature_columns,dnn_hidden_units=dnn_hidden_units, dnn_feature_columns=dnn_feature_columns,
task='binary', l2_reg_embedding=args.reg_emb, device=device, l2_reg_dnn=args.reg_para,
l2_reg_linear=args.reg_para,emb_dim=args.dim,spurious_feat_name=confounder)
elif args.model == 'FairGo':
# print("load pretrained model...")
model = used_model(linear_feature_columns=linear_feature_columns,dnn_hidden_units=dnn_hidden_units, dnn_feature_columns=dnn_feature_columns,
task='binary', l2_reg_embedding=args.reg_emb, device=device, l2_reg_dnn=args.reg_para,
l2_reg_linear=args.reg_para,emb_dim=args.dim,confounder_num=confounder_num,confounder=confounder)
model.load_pretrained_recommender(args.pretrained_model)
elif args.model == 'ipw':
# print("load pretrained model...")
model = used_model(linear_feature_columns=linear_feature_columns,dnn_hidden_units=dnn_hidden_units, dnn_feature_columns=dnn_feature_columns,
task='binary', l2_reg_embedding=args.reg_emb, device=device, l2_reg_dnn=args.reg_para,
l2_reg_linear=args.reg_para,emb_dim=args.dim,propensity_pos=propensity_pos,propensity_neg=propensity_neg,confounder_name=confounder)
else: # NFM
# print("load pretrained model...")
model = used_model(linear_feature_columns=linear_feature_columns,dnn_hidden_units=dnn_hidden_units, dnn_feature_columns=dnn_feature_columns,
task='binary', l2_reg_embedding=args.reg_emb, device=device, l2_reg_dnn=args.reg_para,
l2_reg_linear=args.reg_para,emb_dim=args.dim)
if lr == 0:
lr=None # taking default leaning rate
model.compile(used_optimizer, "binary_crossentropy", metrics=["binary_crossentropy", "auc"],lr=lr)
print("the best model will be saved as:","best-"+save_name, file=log_file)
if need_train: # training.....
history = model.fit(train_model_input, train[target].values, batch_size=args.batch_size, epochs=args.epoch, verbose=1,\
validation_data=(valid_model_input,valid[target].values), save_name=save_name,args_=args,log_file=log_file)
else:
print("test on pretrined model....",file=log_file)
# given the prediction for test data at the best model
print("test model on the best model")
if not need_train:
save_name = dataset + "ipwmax_" + used_optimizer+"-"+args.model+"-vl-"+str(args.use_videolen)+'-vc-'+str(args.use_codelen)+'-' + post_action + '-' + args.model+"-lr_{}-reg_emb_{}-reg_para_{}-dim_{}-stop-{}-auxloss-{}".format(args.lr,args.reg_emb, args.reg_para, args.dim, args.stop_refer,args.alpha)+"-stop-"+args.stop_refer+'-train-'+str(True)
"""
Please keep the following pathe same to the one in the .fit()
"""
if os.path.exists("/data/zyang/decFair/logs/best-"+save_name+"-m.pth"): # load the best model
model.load_state_dict(torch.load("/data/zyang/decFair/logs/best-"+save_name+"-m.pth"))
else:
print("can not load model...",log_file)
return 0
test_y = test[target].values
test_metrics = metrics(test['user_id'].values.squeeze(),test_y[:,0])
test_metrics_post = metrics(test['user_id'].values.squeeze(),test_y[:,1])
if args.model == 'FairNFM' or args.model =='fastFairNFM': # FairNFM
for pre_mode in ['condition','do']: # condition: correlation-based prediction, do: causal prediction
print("\n||| **********prediction mode:",pre_mode,file=log_file)
model.set_pre_mode(mode=pre_mode)
pred_ans = model.predict(test_model_input, 256)
# uauc1,_,_ = uAUC(test['user_id'],pred_ans,test_y[:,0])
topK = [10,20,50]
uauc, map_list, ndcg_list = test_metrics.test(pred_ans,topK=topK)
print('test with the best model, finish uauc:', uauc, 'map:', map_list,'ndcg:', ndcg_list, file=log_file)
# uauc2,_,_ = uAUC(test['user_id'].values, pred_ans, test_y[:,1])
uauc_post, map_post_list, ndcg_post_list = test_metrics_post.test(pred_ans,topK=topK)
print('test with the best model, post action uauc', uauc_post, 'map:', map_post_list, 'ndcg', ndcg_post_list, file=log_file)
torch.cuda.empty_cache()
else:
pred_ans = model.predict(test_model_input, 256)
test_y = test[target].values
topK = [10,20,50]
uauc, map_list, ndcg_list = test_metrics.test(pred_ans,topK=topK)
print('test with the best model, finish uauc:', uauc, 'map:', map_list,'ndcg:', ndcg_list,file=log_file)
# uauc2,_,_ = uAUC(test['user_id'].values, pred_ans, test_y[:,1])
uauc_post, map_post_list, ndcg_post_list = test_metrics_post.test(pred_ans,topK=topK)
print('test with the best model, post action uauc', uauc_post, 'map:', map_post_list, 'ndcg', ndcg_post_list, file=log_file)
# uauc1,_,_ = uAUC(test['user_id'],pred_ans,test_y[:,0])
# print('test with the best model, finish uauc:', uauc1)
# uauc2,_,_ = uAUC(test['user_id'].values, pred_ans, test_y[:,1])
# print('test with the best model, like uauc:',uauc2)
torch.cuda.empty_cache()
if __name__=='__main__':
config={}
config['model']='fastFairNFM'
run_a_model(config)