-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyzer.py
279 lines (220 loc) · 11.1 KB
/
analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# encoding: utf-8
import datetime
import os
import openpyxl
import matplotlib.pyplot as pl
import numpy
DAILY_REPORT_IN_EXCEL_PATH = './huanggang/'
def extract_data_from_official_daily_report_in_excel():
now = datetime.datetime.now()
day = now - datetime.timedelta(days=60)
case_list = list()
date_list = list()
while day <= now:
try:
str_day = datetime.datetime.strftime(day, '%Y%m%d')
report_file = DAILY_REPORT_IN_EXCEL_PATH + str_day + '.xlsx'
if os.path.exists(report_file):
date_list.append(str_day)
work_book = openpyxl.load_workbook(report_file)
sheet_obj = work_book.active
case = dict()
region = dict()
i = 3
while i <= 13:
# Start Feb. 13, data of '临床诊断病例' was added in column 5.
confirmed_cases = sheet_obj.cell(row=i, column=5).value
if not confirmed_cases:
confirmed_cases = sheet_obj.cell(row=i, column=2).value
else:
confirmed_cases += sheet_obj.cell(row=i, column=2).value
region[sheet_obj.cell(row=i, column=1).value] = {
'confirmed': confirmed_cases,
'cured': sheet_obj.cell(row=i, column=3).value,
'dead': sheet_obj.cell(row=i, column=4).value,
}
i += 1
case[str_day] = {
'newly_added': region
}
case_list.append(case)
day += datetime.timedelta(days=1)
except Exception as e:
print(e)
return date_list, case_list
print(F'date_list: {date_list}. case_list: {case_list}')
# def mock_early_case(end_date, str_start_date='20200119'):
# dates = list()
# newly_added_confirmed_cases = list()
# newly_added_cured_cases = list()
# newly_added_dead_cases = list()
# start_date = datetime.datetime.strptime(str_start_date, '%Y%m%d')
# n = (end_date - start_date).days
# for i in range(n):
# dates.append(datetime.datetime.strftime(start_date + datetime.timedelta(days=i), '%Y%m%d'))
# if i == n - 1:
# newly_added_confirmed_cases.append(64) # 122 - 58, data from official report of Jan 25
# else:
# newly_added_confirmed_cases.append(0)
# newly_added_cured_cases.append(0)
# newly_added_dead_cases.append(0)
# return dates, newly_added_confirmed_cases, newly_added_cured_cases, newly_added_dead_cases
def draw_daily_case_figure(date_list, case_number_list, title='疫情新增趋势图', city='', color='red',
case_number_list2=None, color2='red'):
title = city + title
pl.rcParams['font.family'] = 'sans-serif'
pl.rcParams['font.serif'] = ['Heiti']
pl.rcParams["figure.figsize"] = (8, 4)
pl.xticks(rotation=70)
# pl.plot(date_list, case_number_list, 'r', markevery=100)
pl.plot(date_list, case_number_list, color=color, marker='o', linestyle='-', markersize=6)
if case_number_list2:
pl.plot(date_list, case_number_list2, color=color2, marker='o', linestyle='-', markersize=6)
pl.grid(color='grey', axis='y')
# pl.scatter(date_list, case_number_list)
pl.title(title)
# pl.show()
now = datetime.datetime.now()
folder_name = datetime.datetime.strftime(now, '%Y%m%d')
folder_path = F'reports/{folder_name}/{city}'
if not os.path.exists(folder_path):
os.mkdir(folder_path)
t = datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d-%H%M%S')
pl.savefig(F'{folder_path}/{title}-{t}.png')
pl.close()
def draw_bar_figure_by_all_regions(date_list, case_number_list, title='黄冈各县市疫情确诊累计柱状图'):
pl.rcParams['font.family'] = 'sans-serif'
pl.rcParams['font.serif'] = ['Heiti']
pl.rcParams["figure.figsize"] = (8, 4)
# pl.plot(date_list, case_number_list, 'r', markevery=100)
pl.bar(date_list, case_number_list, color='red')
pl.grid(color='grey', axis='y')
# pl.scatter(date_list, case_number_list)
pl.title(title)
# pl.show()
now = datetime.datetime.now()
folder_name = datetime.datetime.strftime(now, '%Y%m%d')
folder_path = F'reports/{folder_name}'
if not os.path.exists(folder_path):
os.mkdir(folder_path)
t = datetime.datetime.strftime(datetime.datetime.now(), '%Y%m%d-%H%M%S')
pl.savefig(F'{folder_path}/{title}-{t}.png')
pl.close()
def write_data_to_excel(date_list, case_number_list, excel_name='data.xlsx'):
wb = openpyxl.Workbook()
ws = wb.active
ws.cell(row=1, column=1, value='日期')
ws.cell(row=2, column=1, value='人数')
for col in range(1, len(date_list) + 1):
ws.cell(row=1, column=col + 1, value=date_list[col-1])
ws.cell(row=2, column=col + 1, value=case_number_list[col - 1])
wb.save(excel_name)
def sum_daily_added_cases(newly_added_case_number_list):
accumulated_cases = list()
accumulated_cases.append(newly_added_case_number_list[0])
i = 1
while i < len(newly_added_case_number_list):
accumulated_case = accumulated_cases[i-1] + newly_added_case_number_list[i]
accumulated_cases.append(accumulated_case)
i += 1
return accumulated_cases
if __name__ == '__main__':
date_list, case_list = extract_data_from_official_daily_report_in_excel()
newly_added_cases_by_regions = list()
for c in case_list:
for i in c:
newly_added_cases_by_regions.append(c.get(i).get('newly_added'))
# newly_added_confirmed_cases.append(c.get(i).get('newly_added').get('confirmed'))
# newly_added_cured_cases.append(c.get(i).get('newly_added').get('cured'))
# newly_added_dead_cases.append(c.get(i).get('newly_added').get('dead'))
all_regions = newly_added_cases_by_regions[0].keys()
newly_added_cases_dict = dict()
for key in all_regions:
newly_added_confirmed_cases = list()
newly_added_cured_cases = list()
newly_added_dead_cases = list()
for i in newly_added_cases_by_regions:
c = i[key]
newly_added_confirmed_cases.append(c.get('confirmed'))
newly_added_cured_cases.append(c.get('cured'))
newly_added_dead_cases.append(c.get('dead'))
newly_added_cases_dict[key] = {
'confirmed': newly_added_confirmed_cases,
'cured': newly_added_cured_cases,
'dead': newly_added_dead_cases,
}
whole_city_newly_added_confirmed_cases = newly_added_cases_dict['全市累计']['confirmed']
whole_city_newly_cured_confirmed_cases = newly_added_cases_dict['全市累计']['cured']
whole_city_newly_dead_confirmed_cases = newly_added_cases_dict['全市累计']['dead']
whole_city_accumulated_confirmed_case_list = sum_daily_added_cases(whole_city_newly_added_confirmed_cases)
whole_city_accumulated_added_cured_cases = sum_daily_added_cases(whole_city_newly_cured_confirmed_cases)
whole_city_accumulated_added_dead_cases = sum_daily_added_cases(whole_city_newly_dead_confirmed_cases)
simplified_date_list = list(map(lambda d: d.split('2020')[1], date_list))
# As the x-ray is so crowed, so simplify the dates
# simplified_date_list = list()
# remove_tags = ('202001', '202002')
# for d in date_list:
# if remove_tags[0] in d:
# t = d.split(remove_tags[0])[1]
# elif remove_tags[1] in d:
# t = '2.' + d.split(remove_tags[1])[1]
# simplified_date_list.append(t)
write_data_to_excel(simplified_date_list, whole_city_newly_added_confirmed_cases)
accumulated_confirmed_case_list_by_regions = list()
accumulated_cured_case_list_by_regions = list()
accumulated_dead_case_list_by_regions = list()
for n in newly_added_cases_dict:
accumulated_confirmed_case_list_by_regions.append(sum_daily_added_cases(newly_added_cases_dict[n]['confirmed']).pop())
accumulated_cured_case_list_by_regions.append(sum_daily_added_cases(newly_added_cases_dict[n]['cured']).pop())
accumulated_dead_case_list_by_regions.append(sum_daily_added_cases(newly_added_cases_dict[n]['dead']).pop())
region_list = list(all_regions)
region_list.pop()
accumulated_confirmed_case_list_by_regions.pop()
accumulated_cured_case_list_by_regions.pop()
accumulated_dead_case_list_by_regions.pop()
zipped = zip(region_list, accumulated_confirmed_case_list_by_regions)
temp = sorted(zipped, key=lambda x: x[1], reverse=True)
sorted_region_list, sorted_accumulated_confirmed_case_list_by_regions = zip(*temp)
draw_bar_figure_by_all_regions(sorted_region_list, sorted_accumulated_confirmed_case_list_by_regions,
F'黄冈各县市疫情确诊累计柱状图(截止到 {datetime.datetime.strftime(datetime.datetime.now() - datetime.timedelta(days=1), "%Y%m%d")})')
# Confirmed cases still in hospital
accumulated_confirmed_case_in_hospital_list_by_regions = list()
i = 0
while i < len(accumulated_confirmed_case_list_by_regions):
accumulated_confirmed_case_in_hospital_list_by_regions.append(accumulated_confirmed_case_list_by_regions[i] -
accumulated_cured_case_list_by_regions[i] -
accumulated_dead_case_list_by_regions[i])
i += 1
zipped = zip(region_list, accumulated_confirmed_case_in_hospital_list_by_regions)
temp = sorted(zipped, key=lambda x: x[1], reverse=True)
sorted_region_list, sorted_accumulated_confirmed_case_in_hospital_list_by_regions = zip(*temp)
draw_bar_figure_by_all_regions(sorted_region_list, sorted_accumulated_confirmed_case_in_hospital_list_by_regions,
F'黄冈各县市仍在医院治疗的确诊柱状图(截止到 {datetime.datetime.strftime(datetime.datetime.now() - datetime.timedelta(days=1), "%Y%m%d")})')
print(F'黄冈各县市仍在医院治疗的确诊{sorted_accumulated_confirmed_case_in_hospital_list_by_regions}')
draw_daily_case_figure(simplified_date_list, whole_city_newly_added_confirmed_cases, '黄冈全市疫情新增确诊趋势图')
draw_daily_case_figure(simplified_date_list, whole_city_accumulated_confirmed_case_list, '黄冈全市疫情确诊累计趋势图')
draw_daily_case_figure(simplified_date_list, whole_city_newly_dead_confirmed_cases, '黄冈全市疫情新增死亡趋势图')
draw_daily_case_figure(simplified_date_list, whole_city_accumulated_added_cured_cases,
'黄冈全市疫情治愈(绿)-死亡(红)累计趋势图', city='', color='green',
case_number_list2=whole_city_accumulated_added_dead_cases, color2='red')
print(F'新增确诊:{whole_city_newly_added_confirmed_cases}')
print(F'新增死亡:{whole_city_newly_dead_confirmed_cases}')
print(F'累计确诊:{whole_city_accumulated_confirmed_case_list}')
print(F'累计治愈:{whole_city_accumulated_added_cured_cases}')
print(F'累计死亡:{whole_city_accumulated_added_dead_cases}')
# macheng
target_city = '麻城'
for city in all_regions:
# if city != target_city:
# continue
city_newly_added_confirmed_cases = newly_added_cases_dict[city]['confirmed']
city_newly_cured_confirmed_cases = newly_added_cases_dict[city]['cured']
city_newly_dead_confirmed_cases = newly_added_cases_dict[city]['dead']
city_accumulated_confirmed_case_list = sum_daily_added_cases(city_newly_added_confirmed_cases)
city_accumulated_added_cured_cases = sum_daily_added_cases(city_newly_cured_confirmed_cases)
city_accumulated_added_dead_cases = sum_daily_added_cases(city_newly_dead_confirmed_cases)
draw_daily_case_figure(simplified_date_list, city_newly_added_confirmed_cases, '疫情新增确诊趋势图', city)
draw_daily_case_figure(simplified_date_list, city_newly_dead_confirmed_cases, '疫情新增死亡趋势图', city)
draw_daily_case_figure(simplified_date_list, city_accumulated_confirmed_case_list, '疫情确诊累计趋势图', city)
draw_daily_case_figure(simplified_date_list, city_accumulated_added_cured_cases, '疫情治愈(绿)-死亡(红)累计趋势图',
city, color='green', case_number_list2=city_accumulated_added_dead_cases, color2='red')