R version of MultiTrans (http://genetics.cs.ucla.edu/multiTrans/)
(suggest using Linux environment)
library(devtools)
install_github("2eding/MTVR")
library(MTVR)
X <- as.matrix(data.table::fread("X_rightdim.txt")) (individual x SNP)
Y <- as.matrix(data.table::fread("Y.txt")) (Phenotype x individual)
- data.table::fread <= This package is useful for input large data
- X_rightdim.txt is snp data
- Y.txt is gene expression data
K <- Kinship(X, outPath, outName)
VC <- varComp(Y, K, numThreads, outPath, outName) (numThreads = Determines how many threads to use)
corrMatrix <- generateR(X, K, VC, outPath, outName)
covBandMatrix <- generateC(windowSize, corrMatrix, outPath = "./", outName = "c.txt")
step1 <- system.file('./slide_1prep', package='MTVR')
step2 <- system.file('./slide_2run', package='MTVR')
step3 <- system.file('./slide_3sort', package='MTVR')
step4 <- system.file('./slide_4correct', package='MTVR')
system(paste(step1, "-C", "covBandMat path", windowSize, "outPath & outName"))
system(paste(step2, "step1's outPath & outName", "outPath & outName", simulationNum, seedNum))
system(paste(step3, "outPath & outName", "step2's outPath & outName"))
system(paste(step4, "-p", "step2's outPath & outName", "threshold file path", "outPath & outName"))