Skip to content

Commit

Permalink
some cleaning of the exact Riemann solver
Browse files Browse the repository at this point in the history
clang-tidy + use eos_rep_t
this is to prepare for some optimizations to come
  • Loading branch information
zingale committed Jun 5, 2024
1 parent 3e61f15 commit d281db1
Showing 1 changed file with 44 additions and 31 deletions.
75 changes: 44 additions & 31 deletions Util/exact_riemann/riemann_support.H
Original file line number Diff line number Diff line change
Expand Up @@ -8,15 +8,19 @@

using namespace amrex::literals;

const amrex::Real smallrho = 1.e-5_rt;
const int max_iters = 100;
const amrex::Real tol = 1.e-6_rt;
namespace riemann_solver {
const int max_iters = 100;

const amrex::Real smallrho = 1.e-5_rt;
const amrex::Real tol = 1.e-6_rt;
const amrex::Real tol_p = 1.e-6_rt;
}


AMREX_INLINE
void
W_s_shock(const amrex::Real W_s, const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real p_s, const amrex::Real e_s, const amrex::Real* xn,
amrex::Real& rhostar_s, eos_t& eos_state, amrex::Real& f, amrex::Real& fprime) {
amrex::Real& rhostar_s, eos_rep_t& eos_state, amrex::Real& f, amrex::Real& fprime) {

// we need rhostar -- get it from the R-H conditions

Expand Down Expand Up @@ -49,9 +53,11 @@ W_s_shock(const amrex::Real W_s, const amrex::Real pstar, const amrex::Real rho_

AMREX_INLINE
void
newton_shock(amrex::Real& W_s, const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real p_s, const amrex::Real e_s, const amrex::Real* xn,
newton_shock(amrex::Real& W_s, const amrex::Real pstar,
const amrex::Real rho_s, const amrex::Real p_s, const amrex::Real e_s,
const amrex::Real* xn,
amrex::Real* rhostar_hist, amrex::Real* Ws_hist,
eos_t& eos_state, bool& converged) {
eos_rep_t& eos_state, bool& converged) {

// Newton iterations -- we are zeroing the energy R-H jump condition
// W^2 [e] = 1/2 [p^2]
Expand All @@ -63,7 +69,7 @@ newton_shock(amrex::Real& W_s, const amrex::Real pstar, const amrex::Real rho_s,
converged = false;

int iter = 1;
while (! converged && iter < max_iters) {
while (! converged && iter < riemann_solver::max_iters) {

amrex::Real rhostar_s, f, fprime;

Expand All @@ -72,7 +78,7 @@ newton_shock(amrex::Real& W_s, const amrex::Real pstar, const amrex::Real rho_s,

amrex::Real dW = -f / fprime;

if (std::abs(dW) < tol * W_s) {
if (std::abs(dW) < riemann_solver::tol * W_s) {
converged = true;
}

Expand All @@ -89,14 +95,15 @@ newton_shock(amrex::Real& W_s, const amrex::Real pstar, const amrex::Real rho_s,

AMREX_INLINE
void
shock(const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real u_s, const amrex::Real p_s, const amrex::Real* xn,
shock(const amrex::Real pstar,
const amrex::Real rho_s, const amrex::Real u_s, const amrex::Real p_s,
const amrex::Real* xn,
const amrex::Real gammaE_bar, const amrex::Real gammaC_bar,
amrex::Real& Z_s, amrex::Real& W_s) {

amrex::ignore_unused(u_s);

const amrex::Real tol_p = 1.e-6_rt;

amrex::Real rhostar_hist[max_iters], Ws_hist[max_iters];
amrex::Real rhostar_hist[riemann_solver::max_iters], Ws_hist[riemann_solver::max_iters];

// compute the Z_s function for a shock following C&G Eq. 20 and
// 23. Here the "_s" variables are the state (L or R) that we are
Expand All @@ -107,7 +114,7 @@ shock(const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real u_s, c

// get the s-state energy, e_s

eos_t eos_state;
eos_rep_t eos_state;
eos_state.rho = rho_s;
eos_state.p = p_s;
for (int n = 0; n < NumSpec; ++n) {
Expand Down Expand Up @@ -137,7 +144,7 @@ shock(const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real u_s, c
// just doesn't work. In this case, we use the ideas from CG, Eq. 35, and
// take W = sqrt(gamma p rho)

if (pstar - p_s < tol_p * p_s) {
if (pstar - p_s < riemann_solver::tol_p * p_s) {
W_s = std::sqrt(eos_state.gam1 * p_s * rho_s);
} else {
W_s = std::sqrt((pstar - p_s) *
Expand All @@ -151,12 +158,10 @@ shock(const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real u_s, c
amrex::Real rhostar_s;

if (taustar_s < 0.0_rt) {
rhostar_s = smallrho;
rhostar_s = riemann_solver::smallrho;
W_s = std::sqrt((pstar - p_s) / (1.0_rt / rho_s - 1.0_rt / rhostar_s));
}

amrex::Real W_s_guess = W_s;

// newton

bool converged;
Expand All @@ -168,7 +173,7 @@ shock(const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real u_s, c
// now did we converge?

if (! converged) {
for (int i = 0; i < max_iters; ++i) {
for (int i = 0; i < riemann_solver::max_iters; ++i) {
std::cout << i << " " << rhostar_hist[i] << " " << Ws_hist[i] << std::endl;
}

Expand Down Expand Up @@ -206,16 +211,19 @@ shock(const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real u_s, c

AMREX_INLINE
void
riemann_invariant_rhs(const amrex::Real p, const amrex::Real tau, const amrex::Real u, const amrex::Real* xn, const int iwave,
riemann_invariant_rhs(const amrex::Real p, const amrex::Real tau, const amrex::Real u,
const amrex::Real* xn, const int iwave,
amrex::Real& dtaudp, amrex::Real& dudp) {

amrex::ignore_unused(u);

// here, p is out independent variable, and tau, u are the
// dependent variables. We return the derivatives of these
// wrt p for integration.

// get the thermodynamics

eos_t eos_state;
eos_rep_t eos_state;
eos_state.rho = 1.0_rt / tau;
eos_state.p = p;
for (int n = 0; n < NumSpec; ++n) {
Expand All @@ -240,7 +248,8 @@ riemann_invariant_rhs(const amrex::Real p, const amrex::Real tau, const amrex::R

AMREX_INLINE
void
riemann_invariant_rhs2(const amrex::Real u, const amrex::Real tau, const amrex::Real p, const amrex::Real* xn, const int iwave,
riemann_invariant_rhs2(const amrex::Real u, const amrex::Real tau, const amrex::Real p,
const amrex::Real* xn, const int iwave,
amrex::Real& dtaudu, amrex::Real& dpdu) {

// here, u is out independent variable, and tau, p are the
Expand All @@ -249,7 +258,9 @@ riemann_invariant_rhs2(const amrex::Real u, const amrex::Real tau, const amrex::

// get the thermodynamics

eos_t eos_state;
amrex::ignore_unused(u);

eos_rep_t eos_state;
eos_state.rho = 1.0_rt / tau;
eos_state.p = p;
for (int n = 0; n < NumSpec; ++n) {
Expand Down Expand Up @@ -314,7 +325,7 @@ rarefaction(const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real

// Z_s is just the Lagrangian sound speed

eos_t eos_state;
eos_rep_t eos_state;
eos_state.rho = 1.0_rt / tau;
eos_state.p = p;
for (int n = 0; n < NumSpec; ++n) {
Expand All @@ -340,24 +351,26 @@ rarefaction(const amrex::Real pstar, const amrex::Real rho_s, const amrex::Real

AMREX_INLINE
void
rarefaction_to_u(const amrex::Real rho_s, const amrex::Real u_s, const amrex::Real p_s, const amrex::Real* xn, const int iwave, const amrex::Real xi,
rarefaction_to_u(const amrex::Real rho_s, const amrex::Real u_s, const amrex::Real p_s,
const amrex::Real* xn, const int iwave, const amrex::Real xi,
amrex::Real& rho, amrex::Real& p, amrex::Real& u) {

const int npts = 1000;

// here we integrate the Riemann invariants for a rarefaction up to
// some intermediate u (between u_s and ustar). This accounts for
// the fact that we are inside the rarefaction.

//
// We reformulate the system of ODEs from C&G Eq. 13 to make u the
// dependent variable. Now we solve:

//
// dp/du = C; dtau/du = -1/C for the 1-wave
// dp/du = -C; dtau/du = 1/C for the 3-wave
//
// we actually don't know the stopping point. For the 1-wave, we
// stop at u = xi + c, for the 3-wave, we stop at u = xi - c, where
// c is computed as we step.

// dp/du = C; dtau/du = -1/C for the 1-wave
// dp/du = -C; dtau/du = 1/C for the 3-wave

amrex::Real tau = 1.0_rt / rho_s;
u = u_s;
Expand All @@ -366,7 +379,7 @@ rarefaction_to_u(const amrex::Real rho_s, const amrex::Real u_s, const amrex::Re
// estimate
// compute c

eos_t eos_state;
eos_rep_t eos_state;
eos_state.rho = 1.0_rt / tau;
eos_state.p = p;
for (int n = 0; n < NumSpec; ++n) {
Expand Down Expand Up @@ -415,7 +428,7 @@ rarefaction_to_u(const amrex::Real rho_s, const amrex::Real u_s, const amrex::Re

// compute c

eos_t eos_state;
eos_rep_t eos_state;
eos_state.rho = 1.0_rt/tau;
eos_state.p = p;
for (int n = 0; n < NumSpec; ++n) {
Expand Down Expand Up @@ -452,7 +465,7 @@ rarefaction_to_u(const amrex::Real rho_s, const amrex::Real u_s, const amrex::Re
}
}

if (std::abs(du) < tol * std::abs(u)) {
if (std::abs(du) < riemann_solver::tol * std::abs(u)) {
finished = true;
}

Expand Down

0 comments on commit d281db1

Please sign in to comment.