Emotion Recognition is an app made with Streamlit in Python, and using NLP, which purpose is to find emotions in text, by using machine learning and deep learning algorithms on two datasets, and compare the different techniques with metrics.
https://share.streamlit.io/atelders/emotion_recognition/main/src/main.py
Click on Classification, Neural Network and fastText to test with a custom sentence.
Two datasets were used:
From Kaggle : Emotion_final.csv From data.world : text_emotion.csv
Source code of the app is in src/main.py
streamlit, pandas, matplotlib.pyplot, seaborn, fasttext, io, pickle, pathlib, sklearn, tensorflow.keras
├── assets
│ ├── frequency_kaggle.png
│ └── frequency_world.png
├── data
│ ├── models
│ │ ├── dt_kaggle_count.sav
│ │ ├── dt_kaggle_tfidf.sav
│ │ ├── dt_world_count.sav
│ │ ├── dt_world_tfidf.sav
│ │ ├── lr_kaggle_count.sav
│ │ ├── lr_kaggle_tfidf.sav
│ │ ├── lr_world_count.sav
│ │ ├── lr_world_tfidf.sav
│ │ ├── svm_kaggle_count.sav
│ │ ├── svm_kaggle_tfidf.sav
│ │ ├── svm_world_count.sav
│ │ └── svm_world_tfidf.sav
│ └── raw
│ ├── Emotion_final.csv
│ └── text_emotion.csv
├── environment.yml
├── fasttext_data.world.bin
├── fasttext_data.world binary.bin
├── fasttext_Kaggle.bin
├── LICENSE
├── notebooks
│ ├── 20210517-at-cs-jd-initial-data-exploration.ipynb
│ ├── neurons.ipynb
│ ├── Random_forest.ipynb
│ └── words_frequency.ipynb
├── README.md
├── src
│ ├── __init__.py
│ ├── main.py
│ └── words_frequency.py
├── test.txt
└── train.txt