Docker + ROS environment for easily using existing pre-trained PyTorch models
- CUDA 11.2
- PyTorch 1.8.1
- Torchvision 0.9.1
- Docker
- nvidia-docker2
- NVIDIA driver compatible with CUDA 11.2
make build-training
make build-ros
- Put a dataset somehwhere.
- Edit
DATASET_DIR
andLOG_DIR
inMakefile
.DATASET_DIR
: Location of the datasetLOG_DIR
: Location to put training log (tensorboard) and checkpoints (trained weights)
- Run
make train
- Build ROS packages
make catkin-build
- Run ROS master
docker-compose up master
- Run
usb_cam
docker-compose up ros-usb-cam
- Run:
docker-compose up ros-object-recognition
- Run:
docker-compose up ros-object-detection
- Run:
docker-compose up ros-semantic-segmentation
Depth estimation (MiDaS)
- Run:
docker-compose up ros-depth-estimation
- Face detection / recognition