Skip to content

Adnandev123/SemanticChangeDetaction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

55 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Pre-Req:

Download and install using the instructions.

Fasttext: https://github.com/facebookresearch/fastText

MUSE: https://github.com/facebookresearch/MUSE

(If you want to skip the training part, download and unzip the pretrained embeddings and pretrained models frome here: https://drive.google.com/open?id=1goxYtiKsj-s4ax27L7sWefpyoDaw36TP )

Create Embedding:

Create fasttext embeddings using dta18.txt (1800) and dta19.txt (1900), use fasttext_model.py

Allignment:

pre-req: MUSE and monolingual and cross-lingual word embeddings evaluation datasets(See MUSE readme).

Supervised allignment: using a train bilingual dictionary (or identical character strings as anchor points), learn a mapping from the source to the target space using (iterative) Procrustes alignment.

Command:

python3 MUSE/supervised.py --src_lang 17 --tgt_lang 18 --src_emb t1.bin --tgt_emb t2.bin --n_refinement 5 --dico_train dictionary.txt --cuda False --emb_dim 512 --dico_eval dictionary.txt

Unsupervised allignment: without any parallel data or anchor point, learn a mapping from the source to the target space using adversarial training and (iterative) Procrustes refinement.

Command:

python3 MUSE/unsupervised.py --src_lang 17 --tgt_lang 18 --src_emb t1.bin --tgt_emb t2.bin --n_refinement 5 --cuda False --emb_dim 512 --dico_eval dictionary.txt

Visualization and distance calculation:

Run distance.py

    Anstalt	0.5013280902314663
    Anstellung	0.507780886911848
    Bilanz	0.5950476413659643
    billig	0.5644998547387627
    Donnerwetter	0.4577280999192952
    englisch	0.46238426270264255
    Feder	0.5277356027146054
    Feine	0.5720351157943221
    geharnischt	0.597379202524812
    locker	0.411954522526508
    Motiv	0.7712048689283667
    Museum	0.4408447676985502
    packen	0.44903838213647584
    Presse	0.6272148963016022
    Reichstag	0.36420825998625206
    technisch	0.6834874266214862
    Vorwort	0.7404966314316774
    Zufall	0.4843775604046865
    Abend	0.31869102668259386

results visualization for Dimention 512 unsupervised alignment

Fig: Results visualization for Dimention 512 unsupervised alignment

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages