Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
AspirinCode authored Mar 30, 2023
1 parent 10dd748 commit 267c2d3
Showing 1 changed file with 4 additions and 3 deletions.
7 changes: 4 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@ iPPIGAN_generate.ipynb
```

## Model Metrics
### MOSES
Molecular Sets (MOSES), a benchmarking platform to support research on machine learning for drug discovery. MOSES implements several popular molecular generation models and provides a set of metrics to evaluate the quality and diversity of generated molecules. With MOSES, MOSES aim to standardize the research on molecular generation and facilitate the sharing and comparison of new models.
https://github.com/molecularsets/moses

Expand All @@ -51,16 +52,16 @@ quantitative estimate of protein-protein interaction targeting drug-likeness

https://github.com/ohuelab/QEPPI

Kosugi T, Ohue M. Quantitative estimate index for early-stage screening of compounds targeting protein-protein interactions. International Journal of Molecular Sciences, 22(20): 10925, 2021. doi: 10.3390/ijms222010925
* Kosugi T, Ohue M. Quantitative estimate index for early-stage screening of compounds targeting protein-protein interactions. International Journal of Molecular Sciences, 22(20): 10925, 2021. doi: 10.3390/ijms222010925
Another QEPPI publication (conference paper)

Kosugi T, Ohue M. Quantitative estimate of protein-protein interaction targeting drug-likeness. In Proceedings of The 18th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2021), 2021. doi: 10.1109/CIBCB49929.2021.9562931 (PDF) * © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
* Kosugi T, Ohue M. Quantitative estimate of protein-protein interaction targeting drug-likeness. In Proceedings of The 18th IEEE International Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2021), 2021. doi: 10.1109/CIBCB49929.2021.9562931 (PDF) * © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

## License
Code is released under GNU AFFERO GENERAL PUBLIC LICENSE.


## Cite:

Jianmin Wang, Yanyi Chu, Jiashun Mao, Hyeon-Nae Jeon, Haiyan Jin, Amir Zeb, Yuil Jang, Kwang-Hwi Cho, Tao Song, Kyoung Tai No, De novo molecular design with deep molecular generative models for PPI inhibitors, Briefings in Bioinformatics, 2022;, bbac285, https://doi.org/10.1093/bib/bbac285
* Jianmin Wang, Yanyi Chu, Jiashun Mao, Hyeon-Nae Jeon, Haiyan Jin, Amir Zeb, Yuil Jang, Kwang-Hwi Cho, Tao Song, Kyoung Tai No, De novo molecular design with deep molecular generative models for PPI inhibitors, Briefings in Bioinformatics, 2022;, bbac285, https://doi.org/10.1093/bib/bbac285

0 comments on commit 267c2d3

Please sign in to comment.