Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixes for Pyro 1.9 compatibility #518

Merged
merged 4 commits into from
Feb 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion chirho/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,4 +2,5 @@

Project short description.
"""
__version__ = "0.0.1"

__version__ = "0.2.0"
7 changes: 6 additions & 1 deletion chirho/interventional/handlers.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,4 +118,9 @@ def _pyro_post_sample(self, msg):
)


do = pyro.poutine.handlers._make_handler(Interventions)[1]
if isinstance(pyro.poutine.handlers._make_handler(Interventions), tuple):
do = pyro.poutine.handlers._make_handler(Interventions)[1]
else:

@pyro.poutine.handlers._make_handler(Interventions)
def do(fn: Callable, actions: Mapping[Hashable, AtomicIntervention[T]]): ...
8 changes: 7 additions & 1 deletion chirho/observational/handlers/condition.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,4 +110,10 @@ def _pyro_sample(self, msg):
self._current_site = None


condition = pyro.poutine.handlers._make_handler(Observations)[1]
if isinstance(pyro.poutine.handlers._make_handler(Observations), tuple):
# backwards compatibility
condition = pyro.poutine.handlers._make_handler(Observations)[1]
else:

@pyro.poutine.handlers._make_handler(Observations)
def condition(fn: Callable, data: Mapping[str, Observation[T]]): ...
1 change: 1 addition & 0 deletions chirho/robust/internals/nmc.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,7 @@ class BatchedNMCLogMarginalLikelihood(Generic[P, T], torch.nn.Module):
used to approximate marginal distribution, defaults to 1
:type num_samples: int, optional
"""

model: Callable[P, Any]
guide: Optional[Callable[P, Any]]
num_samples: int
Expand Down
3 changes: 1 addition & 2 deletions chirho/robust/ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,7 @@
class Functional(Protocol[P, S]):
def __call__(
self, __model: Callable[P, Any], *models: Callable[P, Any]
) -> Callable[P, S]:
...
) -> Callable[P, S]: ...


def influence_fn(
Expand Down
5 changes: 1 addition & 4 deletions tests/observational/test_cut_posterior_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,10 +212,7 @@ def run_svi_inference(model, n_steps=1000, verbose=True, lr=0.03, **model_kwargs
def analytical_linear_gaussian_cut_posterior(data):
post_sd_mod_one = math.sqrt((1 + NUM_SAMPS_MODULE_ONE / SIGMA_ONE**2) ** (-1))
pr_eta_cut = dist.Normal(
1
/ SIGMA_ONE**2
* data["w"].sum()
/ (1 + NUM_SAMPS_MODULE_ONE / SIGMA_ONE**2),
1 / SIGMA_ONE**2 * data["w"].sum() / (1 + NUM_SAMPS_MODULE_ONE / SIGMA_ONE**2),
scale=post_sd_mod_one,
)
post_mean_mod_two = lambda eta: ( # noqa
Expand Down
9 changes: 6 additions & 3 deletions tests/robust/test_handlers.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,11 +28,14 @@
(SimpleModel, lambda _: SimpleGuide(), {"y"}, None),
pytest.param(
SimpleModel,
pyro.infer.autoguide.AutoNormal,
lambda m: pyro.infer.autoguide.AutoNormal(pyro.poutine.block(hide=["y"])(m)),
{"y"},
1,
marks=pytest.mark.xfail(
reason="torch.func autograd doesnt work with PyroParam"
marks=(
[pytest.mark.xfail(reason="torch.func autograd doesnt work with PyroParam")]
if tuple(map(int, pyro.__version__.split("+")[0].split(".")[:3]))
<= (1, 8, 6)
else []
),
),
]
Expand Down
8 changes: 5 additions & 3 deletions tests/robust/test_internals_compositions.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,9 +49,11 @@ def test_empirical_fisher_vp_nmclikelihood_cg_composition():
)

v = {
k: torch.ones_like(v).unsqueeze(0)
if k != "model.guide.loc_a"
else torch.zeros_like(v).unsqueeze(0)
k: (
torch.ones_like(v).unsqueeze(0)
if k != "model.guide.loc_a"
else torch.zeros_like(v).unsqueeze(0)
)
for k, v in log_prob_params.items()
}

Expand Down
19 changes: 14 additions & 5 deletions tests/robust/test_internals_linearize.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,11 +69,20 @@ def test_batch_cg_solve(ndim: int, dtype: torch.dtype, num_particles: int):
(SimpleModel, lambda _: SimpleGuide(), {"y"}, None),
pytest.param(
SimpleModel,
pyro.infer.autoguide.AutoNormal,
lambda m: pyro.infer.autoguide.AutoNormal(
pyro.poutine.block(
hide=[
"y",
]
)(m)
),
{"y"},
1,
marks=pytest.mark.xfail(
reason="torch.func autograd doesnt work with PyroParam"
marks=(
[pytest.mark.xfail(reason="torch.func autograd doesnt work with PyroParam")]
if tuple(map(int, pyro.__version__.split("+")[0].split(".")[:3]))
<= (1, 8, 6)
else []
),
),
]
Expand Down Expand Up @@ -117,7 +126,7 @@ def test_nmc_param_influence_smoke(
for k, v in test_datum_eif.items():
assert not torch.isnan(v).any(), f"eif for {k} had nans"
assert not torch.isinf(v).any(), f"eif for {k} had infs"
if not k.endswith("guide.loc_a"):
if not (k.endswith("guide.loc_a") or k.endswith("a_unconstrained")):
assert not torch.isclose(
v, torch.zeros_like(v)
).all(), f"eif for {k} was zero"
Expand Down Expand Up @@ -162,7 +171,7 @@ def test_nmc_param_influence_vmap_smoke(
for k, v in test_data_eif.items():
assert not torch.isnan(v).any(), f"eif for {k} had nans"
assert not torch.isinf(v).any(), f"eif for {k} had infs"
if not k.endswith("guide.loc_a"):
if not (k.endswith("guide.loc_a") or k.endswith("a_unconstrained")):
assert not torch.isclose(
v, torch.zeros_like(v)
).all(), f"eif for {k} was zero"
Expand Down
9 changes: 6 additions & 3 deletions tests/robust/test_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,11 +28,14 @@
(SimpleModel, lambda _: SimpleGuide(), {"y"}, None),
pytest.param(
SimpleModel,
pyro.infer.autoguide.AutoNormal,
lambda m: pyro.infer.autoguide.AutoNormal(pyro.poutine.block(hide=["y"])(m)),
{"y"},
1,
marks=pytest.mark.xfail(
reason="torch.func autograd doesnt work with PyroParam"
marks=(
[pytest.mark.xfail(reason="torch.func autograd doesnt work with PyroParam")]
if tuple(map(int, pyro.__version__.split("+")[0].split(".")[:3]))
<= (1, 8, 6)
else []
),
),
]
Expand Down
Loading