Skip to content

A software package for developing classification models that predict physical behaviour postures.

License

Notifications You must be signed in to change notification settings

Ben-Jamin-Griff/ProsNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ProsNet

A software package for developing classification models that predict physical behaviour postures.
Explore the docs »

🤔 About The Project

This respository contains the sotware package and models described in the publication:

A Machine Learning Classification Model for Monitoring the Daily Physical Behaviour of Lower-Limb Amputees" (Griffiths et al., 2021).

The code works with data export from the activPAL activtiy monitor palt.com

Here are the main uses for this software:

  • Estimate physical behaviour postures from shank accelerometer data
  • Process shank accelerometer data along with thigh accelerometer event data to create a labeled dataset for training:
    • Machine learning classifiers from heuristic features
    • Deep learning classifiers from windowed acceleration data
  • Re-create the model development process used in Griffiths et al. (2021)
  • Experiment with new model development
  • Estimate non-wear periods from accelerometer data

See the example scripts for each of these use cases.

Built With

🚀 Getting Started

Test out the package and start processing data.

💻 Prerequisites

You need these pre-installed on your device to get started.

  • Python: A useful resource for installing python - instructions
  • Pipenv: A package management tool that automatically creates and manages a virtualenv for your projects, as well as adds/removes packages from your Pipfile as you install/uninstall packages. It also generates the ever-important Pipfile.lock, which is used to produce deterministic builds. This package can be installed using:
pip install pipenv

Installation

  1. Open your terminal/shell and navigate to the directory where you want to install this software
  2. Clone the repo
    git clone https://github.com/Ben-Jamin-Griff/ProsNet.git
  3. Move into repo
    cd ProsNet
  4. Install Python packages
    pipenv install

🗺️ Exploring The Package

Make sure you completed the installation steps and then run the following command:

  • Unix/maxOS
python3 examples/shallow_examples/example_1.py
  • Windows
py examples\shallow_examples\example_1.py

This shows some of the basic functionality of the package. Look through the other examples or dive into the src folder to see what's happening under the hood.

🤝 Contributing

Contributions are what make the open source community such an amazing place. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

Author

👤 Benjamin Griffiths

About

A software package for developing classification models that predict physical behaviour postures.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages