A Julia package to represent biological sequences as Markov chains
BioMarkovChains is a Julia Language package. To install BioMarkovChains, please open Julia's interactive session (known as REPL) and press ] key in the REPL to use the package mode, then type the following command
pkg> add BioMarkovChains
An important step before developing several gene finding algorithms consist of having a Markov chain representation of the DNA. To do so, we implemented the BioMarkovChain
method that will capture the initials and transition probabilities of a DNA sequence (LongSequence
) and will create a dedicated object storing relevant information of a DNA Markov chain. Here an example:
Let find one ORF in a random LongDNA
:
using BioSequences, BioMarkovChains, GeneFinder
# > 180195.SAMN03785337.LFLS01000089 -> finds only 1 gene in Prodigal (from Pyrodigal tests)
seq = dna"AACCAGGGCAATATCAGTACCGCGGGCAATGCAACCCTGACTGCCGGCGGTAACCTGAACAGCACTGGCAATCTGACTGTGGGCGGTGTTACCAACGGCACTGCTACTACTGGCAACATCGCACTGACCGGTAACAATGCGCTGAGCGGTCCGGTCAATCTGAATGCGTCGAATGGCACGGTGACCTTGAACACGACCGGCAATACCACGCTCGGTAACGTGACGGCACAAGGCAATGTGACGACCAATGTGTCCAACGGCAGTCTGACGGTTACCGGCAATACGACAGGTGCCAACACCAACCTCAGTGCCAGCGGCAACCTGACCGTGGGTAACCAGGGCAATATCAGTACCGCAGGCAATGCAACCCTGACGGCCGGCGACAACCTGACGAGCACTGGCAATCTGACTGTGGGCGGCGTCACCAACGGCACGGCCACCACCGGCAACATCGCGCTGACCGGTAACAATGCACTGGCTGGTCCTGTCAATCTGAACGCGCCGAACGGCACCGTGACCCTGAACACAACCGGCAATACCACGCTGGGTAATGTCACCGCACAAGGCAATGTGACGACTAATGTGTCCAACGGCAGCCTGACAGTCGCTGGCAATACCACAGGTGCCAACACCAACCTGAGTGCCAGCGGCAATCTGACCGTGGGCAACCAGGGCAATATCAGTACCGCGGGCAATGCAACCCTGACTGCCGGCGGTAACCTGAGC"
orfseq = findorfs(seq)[3] |> sequence
21nt DNA Sequence:
ATGCGTCGAATGGCACGGTGA
If we translate it, we get a 7aa sequence:
translate(orfseq)
7aa Amino Acid Sequence:
MRRMAR*
Now supposing I do want to see how transitions are occurring in this ORF sequence, the I can use the BioMarkovChain
method and tune it to 2nd-order Markov chain:
BioMarkovChain(orfseq, 2)
BioMarkovChain of DNA alphabet and order 1:
- Transition Probability Matrix -> Matrix{Float64}(4 × 4):
0.25 0.25 0.0 0.5
0.25 0.0 0.75 0.0
0.25 0.25 0.25 0.25
0.0 0.25 0.75 0.0
- Initial Probabilities -> Vector{Float64}(4 × 1):
0.2 0.2 0.4 0.2
But I can also have a BioMarkovChain instance of the Ammino Acid sequence:
BioMarkovChain(translate(orfseq), 2)
BioMarkovChain of AminoAcid alphabet and order 1:
- Transition Probability Matrix -> Matrix{Float64}(20 × 20):
0.0 1.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.333 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.5 0.5 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
- Initial Probabilities -> Vector{Float64}(20 × 1):
0.167 0.5 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0 0.0 0.0
This is useful to later create HMMs and calculate sequence probability based on a given model, for instance we now have the E. coli CDS and No-CDS transition models or Markov chain implemented:
ECOLICDS
BioMarkovChain of DNA alphabet and order 1:
- Transition Probability Matrix -> Matrix{Float64}(4 × 4):
0.31 0.224 0.199 0.268
0.251 0.215 0.313 0.221
0.236 0.308 0.249 0.207
0.178 0.217 0.338 0.267
- Initial Probabilities -> Vector{Float64}(4 × 1):
0.245 0.243 0.273 0.239
What is then the probability of the previous DNA sequence given this model?
markovprobability(orfseq, model=ECOLICDS, logscale=true)
-39.71754773536592
This is off course not very informative, but we can later use different criteria to then classify new ORFs. For a more detailed explanation see the docs