Skip to content

BrendaLoznik/wids2022

Repository files navigation

wids2022

Women in Data Science aims to encourage and inspire women in the data science field and to stimulate more gender diversity. Each year, WiDS hosts a machine learning datathon focused on a social impact challenge.

This year’s datathon focused on climate change. Climate change is a globally relevant, urgent, and multi-faceted issue heavily impacted by energy policy and infrastructure. Addressing climate change involves mitigation (i.e. mitigating greenhouse gas emissions) and adaptation (i.e. preparing for unavoidable consequences).

The aim of the datathon is to predict building energy consumption using variables that describe building characteristics and climate and water variables for the regions in which the buildings are located. Accurate predictions of energy consumption can help policymakers target retrofitting efforts to maximize emissions reductions. Click here to view the competition page on Kaggle.

For this competition, I collaborated with Meyke Bos in team Techonistas. We won the WiDS Maastricht datathon and obtained a top 7% score (rank 57) in the global competition with a RMSE of 21.502

Competition files

  • EDA: Data exploration using data quality reports and visualizations
  • Data cleaning: Dealing with missing data
  • Feature engineering: Creating building id’s and other features
  • Feature selection: Using VIFs to create feature sets
  • Modelling: Using a weighted voting regressor with a tuned random forest and XGBoost

Bonus

About

Women in Data Science Datathon 2022

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published