Skip to content

Latest commit

 

History

History
69 lines (65 loc) · 1.61 KB

README.md

File metadata and controls

69 lines (65 loc) · 1.61 KB

MonsterLab

by Robert Sharp

Monster Class

Optional Inputs

It is recommended to pass all the optional arguments or none of them. For example, a custom type requires a custom name.

  • Name: Compound Gaussian Distribution -> String
    • Derived from Type
    • Multidimensional distribution of types and subtypes
  • Type: Wide Flat Distribution -> String
    • Demonic
    • Devilkin
    • Dragon
    • Undead
    • Elemental
    • Fey
    • Undead
  • Level: Poisson Distribution -> Integer
    • Range: [1..20]
    • Most Common: [4..7] ~64%
    • Mean: 6.001
    • Median: 6
  • Rarity: Linear Distribution [Rank 0..Rank 5] -> String
    • Rank 0: 30.5% Very Common
    • Rank 1: 25.0% Common
    • Rank 2: 19.4% Uncommon
    • Rank 3: 13.8% Rare
    • Rank 4: 8.3% Epic
    • Rank 5: 2.7% Legendary

Derived Fields

  • Damage: Compound Geometric Distribution with Linear Noise -> String
    • Derived from Level and Rarity
  • Health: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Energy: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Sanity: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Time Stamp: The Monster's Birthday -> String

Example Monster

  • Name: Revenant
  • Type: Undead
  • Level: 3
  • Rarity: Rank 0
  • Damage: 3d2+1
  • Health: 6.35
  • Energy: 5.78
  • Sanity: 6.0
  • Time Stamp: 2021-08-09 14:23:23

Code Example

$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23