Skip to content

BrokenShell/MonsterLab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MonsterLab

by Robert Sharp

Monster Class

Optional Inputs

It is recommended to pass all the optional arguments or none of them. For example, a custom type requires a custom name.

  • Name: Compound Gaussian Distribution -> String
    • Derived from Type
    • Multidimensional distribution of types and subtypes
  • Type: Wide Flat Distribution -> String
    • Demonic
    • Devilkin
    • Dragon
    • Undead
    • Elemental
    • Fey
    • Undead
  • Level: Poisson Distribution -> Integer
    • Range: [1..20]
    • Most Common: [4..7] ~64%
    • Mean: 6.001
    • Median: 6
  • Rarity: Linear Distribution [Rank 0..Rank 5] -> String
    • Rank 0: 30.5% Very Common
    • Rank 1: 25.0% Common
    • Rank 2: 19.4% Uncommon
    • Rank 3: 13.8% Rare
    • Rank 4: 8.3% Epic
    • Rank 5: 2.7% Legendary

Derived Fields

  • Damage: Compound Geometric Distribution with Linear Noise -> String
    • Derived from Level and Rarity
  • Health: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Energy: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Sanity: Geometric Distribution with Gaussian Noise -> Float
    • Derived from Level and Rarity
  • Time Stamp: The Monster's Birthday -> String

Example Monster

  • Name: Revenant
  • Type: Undead
  • Level: 3
  • Rarity: Rank 0
  • Damage: 3d2+1
  • Health: 6.35
  • Energy: 5.78
  • Sanity: 6.0
  • Time Stamp: 2021-08-09 14:23:23

Code Example

$ pip install MonsterLab
$ python3
>>> from MonsterLab import Monster
>>> Monster()
Name: Imp
Type: Demonic
Level: 10
Rarity: Rank 0
Damage: 10d2+1
Health: 20.89
Energy: 20.55
Sanity: 20.79
Time Stamp: 2021-08-09 14:23:23

About

Random Monster Generator

Resources

Stars

Watchers

Forks