Skip to content

Latest commit

 

History

History
 
 

unet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

U-Net: Convolutional Networks for Biomedical Image Segmentation

Introduction

Official Repo

Code Snippet

UNet (MICCAI'2016/Nat. Methods'2019)
@inproceedings{ronneberger2015u,
  title={U-net: Convolutional networks for biomedical image segmentation},
  author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
  booktitle={International Conference on Medical image computing and computer-assisted intervention},
  pages={234--241},
  year={2015},
  organization={Springer}
}

Results and models

DRIVE

Method Backbone Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice config download
FCN UNet-S5-D16 584x565 64x64 42x42 40000 0.680 - 78.67 config model | log
PSPNet UNet-S5-D16 584x565 64x64 42x42 40000 0.599 - 78.62 config model | log
DeepLabV3 UNet-S5-D16 584x565 64x64 42x42 40000 0.596 - 78.69 config model | log

STARE

Method Backbone Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice config download
FCN UNet-S5-D16 605x700 128x128 85x85 40000 0.968 - 81.02 config model | log
PSPNet UNet-S5-D16 605x700 128x128 85x85 40000 0.982 - 81.22 config model | log
DeepLabV3 UNet-S5-D16 605x700 128x128 85x85 40000 0.999 - 80.93 config model | log

CHASE_DB1

Method Backbone Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice config download
FCN UNet-S5-D16 960x999 128x128 85x85 40000 0.968 - 80.24 config model | log
PSPNet UNet-S5-D16 960x999 128x128 85x85 40000 0.982 - 80.36 config model | log
DeepLabV3 UNet-S5-D16 960x999 128x128 85x85 40000 0.999 - 80.47 config model | log

HRF

Method Backbone Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice config download
FCN UNet-S5-D16 2336x3504 256x256 170x170 40000 2.525 - 79.45 config model | log
PSPNet UNet-S5-D16 2336x3504 256x256 170x170 40000 2.588 - 80.07 config model | log
DeepLabV3 UNet-S5-D16 2336x3504 256x256 170x170 40000 2.604 - 80.21 config model | log