UNet (MICCAI'2016/Nat. Methods'2019)
@inproceedings{ronneberger2015u,
title={U-net: Convolutional networks for biomedical image segmentation},
author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
booktitle={International Conference on Medical image computing and computer-assisted intervention},
pages={234--241},
year={2015},
organization={Springer}
}
Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.680 | - | 78.67 | config | model | log |
PSPNet | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.599 | - | 78.62 | config | model | log |
DeepLabV3 | UNet-S5-D16 | 584x565 | 64x64 | 42x42 | 40000 | 0.596 | - | 78.69 | config | model | log |
Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.968 | - | 81.02 | config | model | log |
PSPNet | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.982 | - | 81.22 | config | model | log |
DeepLabV3 | UNet-S5-D16 | 605x700 | 128x128 | 85x85 | 40000 | 0.999 | - | 80.93 | config | model | log |
Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.968 | - | 80.24 | config | model | log |
PSPNet | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.982 | - | 80.36 | config | model | log |
DeepLabV3 | UNet-S5-D16 | 960x999 | 128x128 | 85x85 | 40000 | 0.999 | - | 80.47 | config | model | log |
Method | Backbone | Image Size | Crop Size | Stride | Lr schd | Mem (GB) | Inf time (fps) | Dice | config | download |
---|---|---|---|---|---|---|---|---|---|---|
FCN | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.525 | - | 79.45 | config | model | log |
PSPNet | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.588 | - | 80.07 | config | model | log |
DeepLabV3 | UNet-S5-D16 | 2336x3504 | 256x256 | 170x170 | 40000 | 2.604 | - | 80.21 | config | model | log |