Skip to content

CarDD-USTC/CarDD-USTC.github.io

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CarDD: A New Dataset for Vision-based Car Damage Detection

by Xinkuang Wang, Wenjing Li, Zhongcheng Wu.

CarDD Dataset

Information about the CarDD dataset is available at https://cardd-ustc.github.io/.

Car Damage Detection and Segmentation

Environment setup

Environment requirement: Pytorch 1.7.0 + Python 3.8 + CUDA 11.0

  1. Clone the repo:

    git clone https://github.com/CarDD-USTC/CarDD-USTC.github.io.git
    cd CarDD-USTC.github.io/code/CarDD_detection
    
  2. Prepare the environment:

    pip install openmim
    mim install mmdet
    pip install mmcv==1.7.0
    export MPLBACKEND='Agg' && export PYTHONPATH=$(CODE_PATH)/CarDD_detection/
    

Usage

  1. Download CarDD at https://cardd-ustc.github.io/. Download pretrained models at Model Zoo to $(MODEL_PATH).

  2. Train:

    python tools/train.py configs/car_damage/DCN_plus_cfg.py --work-dir $(WORK_PATH)
    
  3. Test:

    python tools/test.py configs/car_damage/DCN_plus_cfg.py $(WORK_PATH)/epoch_24.pth --eval bbox segm --options "classwise=True"
    
  4. Test and visualize:

    python tools/test.py configs/car_damage/DCN_plus_cfg.py $(WORK_PATH)/epoch_24.pth --show-dir $(VIS_PATH) --show-score-thr 0.7
    
  5. Only inference:

    python tools/inference.py \
    --img-path=$(IMG_PATH) \
    --save-path=$(SAVE_PATH) \
    --config-file=configs/car_damage/DCN_plus_cfg.py  \
    --checkpoint-file=$(WORK_PATH)/epoch_24.pth
    

Salient Damage Detection

Environment setup

Please refer to each repository:

U2Net | PoolNet | KRN | CSNet | Saliency-Evaluation-Toolbox

Usage

  • U2Net:

    cd $(CODE_PATH)/CarDD_SOD/U2-Net/
    train: python u2net_train.py
    test: python u2net_test.py
    
  • PoolNet:

    cd $(CODE_PATH)/CarDD_SOD/PoolNet/
    train: python main.py --arch resnet --mode train --device 0 --data_root $(DATA_PATH)/CarDD_SOD/ --save_folder $(WORK_PATH)
    test: python main.py --mode test --model $(WORK_PATH)/run-0/models/final.pth --test_fold $(SAVE_PATH) --data_root $(DATA_PATH)
    
  • KRN:

    cd $(CODE_PATH)/CarDD_SOD/KRN/
    train: python main_SGL_KRN.py --mode train --device 0 --data_root $(DATA_PATH)/CarDD_SOD/ --save_folder $(WORK_PATH)
    test: python main_SGL_KRN.py --mode test --device 0 --sal_mode t --test_model $(WORK_PATH)/run-0/models/final.pth --test_fold $(SAVE_PATH) --data_root $(DATA_PATH)
    
  • CSNet:

    cd $(CODE_PATH)/CarDD_SOD/CSNet/CSNet_training/
    train: python train.py --config configs/csnet-L-x2_train-CarDD.yml
    test: python test.py --config configs/csnet-L-x2_train-CarDD.yml
    
  • Evaluate:

    Please refer to Saliency-Evaluation-Toolbox.

Acknowledgments

Citation

If you found this code helpful, please consider citing:

@article{CarDD,
  author={Wang, Xinkuang and Li, Wenjing and Wu, Zhongcheng},
  journal={IEEE Transactions on Intelligent Transportation Systems}, 
  title={CarDD: A New Dataset for Vision-Based Car Damage Detection}, 
  year={2023},
  volume={24},
  number={7},
  pages={7202-7214},
  doi={10.1109/TITS.2023.3258480}
}