Skip to content

Commit

Permalink
add string match to filter objects
Browse files Browse the repository at this point in the history
  • Loading branch information
ErinWeisbart committed Aug 13, 2024
1 parent f0e4db1 commit e24de9e
Showing 1 changed file with 203 additions and 0 deletions.
203 changes: 203 additions & 0 deletions active_plugins/filterobjects_stringmatch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,203 @@
from cellprofiler_core.module.image_segmentation import ObjectProcessing
from cellprofiler_core.setting import (
Divider,
)
from cellprofiler_core.setting.text import Alphanumeric

__doc__ = ""

import logging
import os

import numpy
import scipy
import scipy.ndimage
import scipy.sparse

import cellprofiler_core.object
from cellprofiler.utilities.rules import Rules

LOGGER = logging.getLogger(__name__)


class FilterObjects_StringMatch(ObjectProcessing):
module_name = "FilterObjects_StringMatch"

variable_revision_number = 10

def __init__(self):
self.rules = Rules()

super(FilterObjects_StringMatch, self).__init__()

def create_settings(self):
super(FilterObjects_StringMatch, self).create_settings()

self.x_name.text = """Select the objects to filter"""

self.x_name.doc = ""

self.y_name.text = """Name the output objects"""

self.y_name.doc = "Enter a name for the collection of objects that are retained after applying the filter(s)."

self.spacer_1 = Divider(line=False)

self.filter_out = Alphanumeric(
"What string to filter out",
"AAAA",
doc="""Enter a name for the measurement calculated by this module.""",
)

self.rules.create_settings()

def settings(self):
settings = super(FilterObjects_StringMatch, self).settings()
return settings

def help_settings(self):
return [
]

def visible_settings(self):
visible_settings = super(FilterObjects_StringMatch, self).visible_settings()
visible_settings += [
self.filter_out
]
return visible_settings

def run(self, workspace):
"""Filter objects for this image set, display results"""
src_objects = workspace.get_objects(self.x_name.value)

indexes = self.keep_by_string(workspace, src_objects)

#
# Create an array that maps label indexes to their new values
# All labels to be deleted have a value in this array of zero
#
new_object_count = len(indexes)
max_label = numpy.max(src_objects.segmented)
label_indexes = numpy.zeros((max_label + 1,), int)
label_indexes[indexes] = numpy.arange(1, new_object_count + 1)
#
# Loop over both the primary and additional objects
#
object_list = [(self.x_name.value, self.y_name.value)]
m = workspace.measurements
first_set = True
for src_name, target_name in object_list:
src_objects = workspace.get_objects(src_name)
target_labels = src_objects.segmented.copy()
#
# Reindex the labels of the old source image
#
target_labels[target_labels > max_label] = 0
target_labels = label_indexes[target_labels]
#
# Make a new set of objects - retain the old set's unedited
# segmentation for the new and generally try to copy stuff
# from the old to the new.
#
target_objects = cellprofiler_core.object.Objects()
target_objects.segmented = target_labels
target_objects.unedited_segmented = src_objects.unedited_segmented
#
# Remove the filtered objects from the small_removed_segmented
# if present. "small_removed_segmented" should really be
# "filtered_removed_segmented".
#
small_removed = src_objects.small_removed_segmented.copy()
small_removed[(target_labels == 0) & (src_objects.segmented != 0)] = 0
target_objects.small_removed_segmented = small_removed
if src_objects.has_parent_image:
target_objects.parent_image = src_objects.parent_image
workspace.object_set.add_objects(target_objects, target_name)

self.add_measurements(workspace, src_name, target_name)
if self.show_window and first_set:
workspace.display_data.src_objects_segmented = src_objects.segmented
workspace.display_data.target_objects_segmented = target_objects.segmented
workspace.display_data.dimensions = src_objects.dimensions
first_set = False

def display(self, workspace, figure):
"""Display what was filtered"""
src_name = self.x_name.value
src_objects_segmented = workspace.display_data.src_objects_segmented
target_objects_segmented = workspace.display_data.target_objects_segmented
dimensions = workspace.display_data.dimensions

target_name = self.y_name.value

figure.set_subplots((2, 2), dimensions=dimensions)

figure.subplot_imshow_labels(
0, 0, src_objects_segmented, title="Original: %s" % src_name
)

figure.subplot_imshow_labels(
1,
0,
target_objects_segmented,
title="Filtered: %s" % target_name,
sharexy=figure.subplot(0, 0),
)

pre = numpy.max(src_objects_segmented)
post = numpy.max(target_objects_segmented)

statistics = [[pre], [post], [pre - post]]

figure.subplot_table(
0,
1,
statistics,
row_labels=(
"Number of objects pre-filtering",
"Number of objects post-filtering",
"Number of objects removed",
),
)

def keep_by_string(self, workspace, src_objects):
"""
workspace - workspace passed into Run
src_objects - the Objects instance to be filtered
"""
src_name = self.x_name.value
m = workspace.measurements
values = m.get_current_measurement(src_name, "Barcode_BarcodeCalled")

# Is this structure still necessary or is it an artifact?
# Could be just values == self.filter_out.value
# Make an array of True
hits = numpy.ones(len(values), bool)
# Fill with False for those where we want to filter out
hits[values == self.filter_out.value] = False

# Get object numbers for things that are True
indexes = numpy.argwhere(hits)[:, 0]
# Objects are 1 counted, Python is 0 counted
indexes = indexes + 1
return indexes


def prepare_to_create_batch(self, workspace, fn_alter_path):
"""Prepare to create a batch file
This function is called when CellProfiler is about to create a
file for batch processing. It will pickle the image set list's
"legacy_fields" dictionary. This callback lets a module prepare for
saving.
pipeline - the pipeline to be saved
image_set_list - the image set list to be saved
fn_alter_path - this is a function that takes a pathname on the local
host and returns a pathname on the remote host. It
handles issues such as replacing backslashes and
mapping mountpoints. It should be called for every
pathname stored in the settings or legacy fields.
"""
self.rules_directory.alter_for_create_batch_files(fn_alter_path)
return True

0 comments on commit e24de9e

Please sign in to comment.