-
Notifications
You must be signed in to change notification settings - Fork 0
/
LNM_script.py
37 lines (34 loc) · 1.51 KB
/
LNM_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#!/bin/python
## This script is for preprocessing data from original file to output.
## Steps of the script include: if the list of lesions/MNI coords are given,
## 1. create lesion mask 2. randomise analysis 3. create tmap for each lesion
#################################################
## Definition Area
#################################################
lesion_dir = '/home/clancy/data/LesionBrainMapping/ROIs'
output_dir = '/home/clancy/data/LesionBrainMapping/FebTest_roi'
n_threads = 10 # n_threads number, correspondence to number of lesions
#################################################
## Run
#################################################
from brainmapping.quick_connectome_from_roi import *
quick_connectome_from_roi(lesion_dir, output_dir, n_threads)
#################################################
## Definition Area
#################################################
# lesion_MNI_coordinate_csv format:
# example:
# label x y z
# xx, 8.67, 69.95, -2.67
# .., .. , .., ..
lesion_MNI_coordinate_csv = '/home/clancy/data/LesionBrainMapping/mni_coordinate.csv'
roi_radius = 10
output_dir = '/home/clancy/data/LesionBrainMapping/FebTest_cood'
n_threads = 10 # n_threads number, correspondence to number of lesions
#################################################
## Run
#################################################
from brainmapping.quick_connectome_from_roi import *
quick_connectome_from_coordinate(lesion_MNI_coordinate_csv, roi_radius, output_dir, n_threads)
# author@kangwu
# date: Feb 27 24