Skip to content

CompVis/brushstroke-parameterized-style-transfer

Repository files navigation

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021)

img

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes.
Dmytro Kotovenko*, Matthias Wright*, Arthur Heimbrecht, and Björn Ommer.
* denotes equal contribution

Implementations

We provide implementations in Tensorflow 1 and Tensorflow 2. In order to reproduce the results from the paper, we recommend the Tensorflow 1 implementation.

Installation

  1. Clone this repository:
    > git clone https://github.com/CompVis/brushstroke-parameterized-style-transfer
    > cd brushstroke-parameterized-style-transfer
  2. Install Tensorflow 1.14 (preferably with GPU support).
    If you are using Conda, this command will create a new environment and install Tensorflow as well as compatible CUDA and cuDNN versions.
    > conda create --name tf14 tensorflow-gpu==1.14
    > conda activate tf14
  3. Install requirements:
    > pip install -r requirements.txt

Basic Usage

from PIL import Image
import model

content_img = Image.open('images/content/golden_gate.jpg')
style_img = Image.open('images/style/van_gogh_starry_night.jpg')

stylized_img = model.stylize(content_img,
                             style_img,
                             num_strokes=5000,
                             num_steps=100,
                             content_weight=1.0,
                             style_weight=3.0,
                             num_steps_pixel=1000)

stylized_img.save('images/stylized.jpg')

or open Colab.

Drawing App

We created a Streamlit app where you can draw curves to control the flow of brushstrokes.

img

Run drawing app on your machine

To run the app on your own machine:

> CUDA_VISIBLE_DEVICES=0 streamlit run app.py

You can also run the app on a remote server and forward the port to your local machine: https://docs.streamlit.io/en/0.66.0/tutorial/run_streamlit_remotely.html

Run streamlit app from Colab

If you don't have access to GPUs we also created a Colab from which you can start the drawing app.

Other implementations

PyTorch implementation by justanhduc.

Citation

@article{kotovenko_cvpr_2021,
    title={Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes},
    author={Dmytro Kotovenko and Matthias Wright and Arthur Heimbrecht and Bj{\"o}rn Ommer},
    journal={CVPR},
    year={2021}
}

About

TensorFlow implementation of our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published