Skip to content

DataScientest-Studio/jul24bmlops_plant

Repository files navigation

jul24_bmlops_plant_recognition: Plant Recognition MLOps

This project was made during the Data Scientist course of Datascientest and used the datasets described below:

Team

Coordinator Sebastien Sime

Project Organization

├── .github
│   └── workflows                           <- Contains the template for the Pull Request and the CI
├──api_auth
│  ├──app                                   <- Source code for use in this project.
│  │  ├──database
│  │  ├──endpoints
│  │  ├── main.py
│  │  ├──schemas
│  │  └──utils
│  ├── Dockerfile
│  ├── README.md
│  ├── requirements.txt
│  ├──tests
│  └── wait-for-it.sh
├──api_db
│  ├──app                                   <- Source code for use in this project.
│  │  ├──database
│  │  ├──endpoints
│  │  ├── main.py
│  │  ├──schemas
│  │  └──utils
│  ├── centralised_db_management.yml
│  ├── Dockerfile
│  ├── micro_service_architecture.yml
│  ├── requirements.txt
│  └──tests
├──api_mlflow
│  ├── docker-compose.yml
│  ├── Dockerfile
│  ├──model                                 <- Source code for use in this project.
│  ├── pyproject.toml
│  ├── README.md
│  ├── retrain.sh
│  ├──test
│  └── train.sh
├──api_prediction
│  ├──app                                   <- Source code for use in this project.
│  │  ├──database
│  │  ├──endpoints
│  │  ├── main.py
│  │  ├──schemas
│  │  └──utils
│  ├── Dockerfile
│  ├── README.md
│  ├── requirements.txt
│  └──tests
├──api_training
│  ├──app                                   <- Source code for use in this project.
│  │  ├──database
│  │  ├──endpoints
│  │  ├── main.py
│  │  ├──schemas
│  │  └──utils
│  ├── Dockerfile
│  ├── requirements.txt
│  └──tests
├── docker-compose.yml
├── poetry.lock                             <- Dependencies used by poetry.
├── pyproject.toml                          <- Package manager.
├── README.md                               <- The top-level README for developers using this project.
├──reports                                  <- The reports that you'll make during this project as PDF
├── requirements.txt
└── ROADMAP.md                              <- The summary plan for developers using this project.

Summary plan

Please refer here

How to build the project

Command to build the images

docker compose build

Command to excute the app

docker compose up

We will use this to mount the GDrive folder that contains the MLFlow data and the Dataset.

Project based on the cookiecutter data science project template. #cookiecutterdatascience

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •