- 구현
- End-to-End Object Detection with Transformers 논문(DEtection TRansformer or DETR)의 논문을 읽기 전 Transformer 이해가 필수였고, 어쩌다 보니 자연어처리에 관심이 생겨 구현까지 진행(좋은 경험함)
- Label Smoothing(학습), Beam Search(결과), BLEU(Bilingual Evaluation Understudy) Score 계산(평가) 등은 구현하지 않음
- OS : ubuntu linux 18.04 LTS
- Graphic card / driver : rtx 2080ti / 418.56
- Anaconda version : 4.10.3
- pytorch version : 1.9.1
- Configure Run Environment
- Create a virtual environment
jg@JG:~$ conda create -n pytorch python==3.8.8
- Install the required module
jg@JG:~$ conda activate pytorch (pytorch) jg@JG:~$ conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch (pytorch) jg@JG:~$ pip install spacy matplotlib torchtext tensorboard torchsummary torchtext tqdm PyYAML --pre --upgrade (pytorch) jg@JG:~$ python -m spacy download en_core_web_sm (pytorch) jg@JG:~$ python -m spacy download de_core_news_sm
- Configure Run Environment
- [email protected] / JONGGON