This project is inspired by Fighting CV's project. Also, other references are included to get code insights.
Other references:
- x-transformers
- xFormers
- OpenMixup
- Awesome-Vision-Attentions
- vit-pytorch
- Networks-Beyond-Attention
- Efficient-AI-Backbones
# code test env.
python == 3.10.8
pytorch == 1.12.1
- Kolmogorov-Arnold Models
- State Space Models
- Spatial Attentions
- Channel Attentions
- MLPs
- Convolutions
- Spectral Features
- Graph
- Hybrid
- Spatio-Temporal (ST)
- Activations
- Patch Embedding
- Branch Scaling
- Normalization
- Backbones
- Kolmogorov-Arnold Transformer (KAT, 2024) --- (pytorch_v1)
- CSM (VMamba, 2024) --- (pytorch_v1)(graph)
- Bidirectional Mamba (Vim, 2024) --- (pytorch_v1)(graph)
- ConvSSM (ConvS5, 2023) --- (pytorch_v1)(graph)
- Selective SSMs (Mamba, 2023) --- (pytorch_v1)(graph)
- HiLo Attention (LITv2, 2022) --- (pytorch_v1)(graph)
- Pay Less Attention (LITv1, 2022) --- (pytorch_v1)(graph)
- External Attention (EANet, 2021) --- (pytorch_v1)(graph)
- Non-local Multi-head Self-Attention (Transformer, 2017) --- (pytorch_v1)(graph)
- Frequency Channel Attention (FcaNet, 2021) --- (pytorch_v1)(graph)
- Global Context Attention (GCNet, 2019) --- (pytorch_v1)(graph)
- Efficient Channel Attention (ECA-Net, 2019) --- (pytorch_v1)(graph)
- Squeeze-and-Excitation (SE-Net, 2018) --- (pytorch_v1)(graph)
- Mixing and Shifting for global and local (MS-MLP, 2022) --- (pytorch_v1)(graph)
- Phase-Aware Token Mixing (Wave-MLP, 2022) --- (pytorch_v1)(graph)
- An all-MLP Architecture for Vision (MLP-Mixer, 2021) --- (pytorch_v1)(graph)
- GatedCNNBlock (MambaOut, 2024) --- (pytorch_v1)(graph)
- Efficient Modulation (EfficientMod. 2024) --- (pytorch_v1)
- SMT (Scale-Aware Modulation Meet Transformer, 2023) --- (pytorch_v1)
- InceptionDWConv2d (InceptionNeXt, 2023) --- (pytorch_v1)(graph)
- ParC operator (ParC-Net, 2022) --- (pytorch_v1)(graph)
- Dynamic DWConv (DWNet, 2022) --- (pytorch_v1)(graph)
- Focal Module (FocalNets, 2022) --- (pytorch_v1)(graph)
- gnConv (HorNet, 2022) --- (pytorch_v1)(graph)
- MSCA (SegNeXt, 2022) --- (pytorch_v1)(graph)
- LKA (VAN, 2022) --- (pytorch_v1)(graph)
- Pooling (MetaFormer, 2022) --- (pytorch_v1)(graph)
- RandomMixing (MetaFormer, 2022) --- (pytorch_v1)(graph)
- Inverted SepConv (MobileNetV2, 2018) --- (pytorch_v1)(graph)
- Deformable Conv (Deformable ConvNet, 2017) --- (pytorch_v1)
- Dynamic Filter (DFFormer, 2024) --- (pytorch_v1)
- Global Filter (GFNet, 2021) --- (pytorch_v1)(graph)
- Fourier Mixer (FNet, 2021) --- (pytorch_v1)(graph)
- Fourier_test --- (pytorch_v1)
- img_FFT --- (.py)(.ipynb)(2D FFT)
- Mobile ViG (SVGA, 2023) --- (pytorch_v1)(graph)
- Vision GNN (ViG, 2022) --- (pytorch_v1)(graph)
- GINconv2d (GIN, 2019) --- (pytorch_v1)(graph)
- DeepGCNs (MR-GCN, 2019) --- (pytorch_v1)(graph)
- Inception Mixer (iFormer, 2022) --- (pytorch_v1)(graph)
- MHRA (Uniformer v1, 2022) --- (pytorch_v1)(graph)
- MHRA (Uniformer v2, 2022) --- (pytorch_v1)(graph)(mmaction2)
- MHRA (Uniformer v1, 2022) --- (pytorch_v1)(graph)(mmaction2)
- StarReLU (2022) --- (pytorch_v1)
- SquaredReLU (2021) --- (pytorch_v1)
- Swish (2017) --- (pytorch_v1)
- GELU (2016) --- (pytorch_v1)(scratch_code)(quick_version)
- ReLU (2010) --- (pytorch_v1)
- Softsign (2009) --- (pytorch_v1)
- Zero-centered s-shaped functions --- (pytorch_v1)
- S-shape activation function comparision --- (pytorch_v1)
- patch embed --- (pytorch_v1)
- Layer-/Residual-branch scaling (LayerScale 2021, ResScale 2021) --- (pytorch_v1)(timm)
- GroupNorm
- LayerNorm (2016) --- (pytorch_v1)
- BatchNorm (2015) --- (pytorch_v1)
- Efficient Modulation Network (2024) --- (pytorch_v1)
- VanillaNet (2023) --- (pytorch_v1)
- InceptionNeXt; MetaNeXt (2023) --- (pytorch_v1)
- MetaFormer baseline (2022) --- (pytorch_v1)
- PoolFormer (2022) --- (pytorch_v1)