Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix inference #30

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions amt/audio.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def __init__(
reduce_ratio: float = 0.01,
detune_ratio: float = 0.1,
detune_max_shift: float = 0.15,
spec_aug_ratio: float = 0.95,
spec_aug_ratio: float = 0.9,
):
super().__init__()
self.tokenizer = AmtTokenizer()
Expand Down Expand Up @@ -135,12 +135,13 @@ def __init__(
n_stft=self.config["n_fft"] // 2 + 1,
)
self.spec_aug = torch.nn.Sequential(
torchaudio.transforms.TimeMasking(
time_mask_param=self.time_mask_param,
iid_masks=True,
),
torchaudio.transforms.FrequencyMasking(
freq_mask_param=self.freq_mask_param, iid_masks=True
),
torchaudio.transforms.TimeMasking(
time_mask_param=self.time_mask_param, iid_masks=True
),
)

def get_params(self):
Expand Down
8 changes: 4 additions & 4 deletions amt/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,9 +88,9 @@ def get_wav_mid_segments(
max_pedal_len_ms=15000,
)

# Hardcoded to 2.5s
if _check_onset_threshold(mid_feature, 2500) is False:
print("No note messages after 2.5s - skipping")
# Hardcoded to 5s
if _check_onset_threshold(mid_feature, 5000) is False:
print("No note messages after 5s - skipping")
continue

else:
Expand Down Expand Up @@ -149,7 +149,7 @@ def pianoteq_cmd_fn(mid_path: str, wav_path: str):
safe_mid_path = shlex.quote(mid_path)
safe_wav_path = shlex.quote(wav_path)

executable_path = "/home/loubb/pianoteq/x86-64bit/Pianoteq 8 STAGE"
executable_path = "/mnt/ssd-1/aria/pianoteq/x86-64bit/Pianoteq 8 STAGE"
command = f'"{executable_path}" --preset {safe_preset} --midi {safe_mid_path} --wav {safe_wav_path}'

return command
Expand Down
5 changes: 2 additions & 3 deletions amt/inference/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -354,6 +354,7 @@ def __init__(
]
)
self.ln = nn.LayerNorm(n_state)
self.output = nn.Linear(n_state, n_vocab, bias=False)
self.register_buffer("causal_mask", None, persistent=False)

def forward(
Expand All @@ -376,9 +377,7 @@ def forward(
)

x = self.ln(x)
logits = (
x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)
).float()
logits = self.output(x)

return logits

Expand Down
14 changes: 5 additions & 9 deletions amt/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def forward(
wv = wv.transpose(1, 2)
wv = wv.view(batch_size, target_seq_len, self.n_head * self.d_head)

return self.out(wv), None
return self.out(wv)


class ResidualAttentionBlock(nn.Module):
Expand Down Expand Up @@ -129,9 +129,9 @@ def forward(
xa: Optional[Tensor] = None,
mask: Optional[Tensor] = None,
):
x = x + self.attn(self.attn_ln(x), mask=mask)[0]
x = x + self.attn(self.attn_ln(x), mask=mask)
if self.cross_attn:
x = x + self.cross_attn(self.cross_attn_ln(x), xa)[0]
x = x + self.cross_attn(self.cross_attn_ln(x), xa)
x = x + self.mlp(self.mlp_ln(x))
return x

Expand Down Expand Up @@ -188,6 +188,7 @@ def __init__(
]
)
self.ln = nn.LayerNorm(n_state)
self.output = nn.Linear(n_state, n_vocab, bias=False)

mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
self.register_buffer("mask", mask, persistent=False)
Expand All @@ -206,9 +207,7 @@ def forward(self, x: Tensor, xa: Tensor):
x = block(x, xa, mask=self.mask)

x = self.ln(x)
logits = (
x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)
).float()
logits = self.output(x)

return logits

Expand Down Expand Up @@ -245,6 +244,3 @@ def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> torch.Tensor:
@property
def device(self):
return next(self.parameters()).device

def get_empty_cache(self):
return {}
44 changes: 27 additions & 17 deletions amt/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import sys
import csv
import random
import traceback
import functools
import argparse
import logging
Expand All @@ -24,7 +25,7 @@
from amt.config import load_model_config
from aria.utils import _load_weight

GRADIENT_ACC_STEPS = 32
GRADIENT_ACC_STEPS = 2

# ----- USAGE -----
#
Expand Down Expand Up @@ -143,7 +144,7 @@ def _get_optim(
model.parameters(),
lr=lr,
weight_decay=0.1,
betas=(0.9, 0.98),
betas=(0.9, 0.95),
eps=1e-6,
)

Expand Down Expand Up @@ -344,6 +345,7 @@ def train_loop(
lr_for_print = "{:.2e}".format(optimizer.param_groups[-1]["lr"])

model.train()
grad_norm = 0.0
for __step, batch in (
pbar := tqdm(
enumerate(dataloader),
Expand Down Expand Up @@ -378,8 +380,6 @@ def train_loop(
grad_norm = accelerator.clip_grad_norm_(
model.parameters(), 1.0
).item()
else:
grad_norm = 0
optimizer.step()
optimizer.zero_grad()

Expand All @@ -398,7 +398,8 @@ def train_loop(
pbar.set_postfix_str(
f"lr={lr_for_print}, "
f"loss={round(loss_buffer[-1], 4)}, "
f"trailing={round(trailing_loss, 4)}"
f"trailing={round(trailing_loss, 4)}, "
f"grad_norm={round(grad_norm, 4)}"
)

if scheduler:
Expand Down Expand Up @@ -470,6 +471,7 @@ def val_loop(dataloader, _epoch: int, aug: bool):
PAD_ID = train_dataloader.dataset.tokenizer.pad_id
logger = get_logger(__name__) # Accelerate logger
loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_ID)

logger.info(
f"Model has "
f"{'{:,}'.format(sum(p.numel() for p in model.parameters() if p.requires_grad))} "
Expand Down Expand Up @@ -522,19 +524,27 @@ def val_loop(dataloader, _epoch: int, aug: bool):
)

for epoch in range(start_epoch, epochs + start_epoch):
avg_train_loss = train_loop(dataloader=train_dataloader, _epoch=epoch)
avg_val_loss = val_loop(
dataloader=val_dataloader, _epoch=epoch, aug=False
)
avg_val_loss_aug = val_loop(
dataloader=val_dataloader, _epoch=epoch, aug=True
)
if accelerator.is_main_process:
epoch_writer.writerow(
[epoch, avg_train_loss, avg_val_loss, avg_val_loss_aug]
try:
avg_train_loss = train_loop(
dataloader=train_dataloader, _epoch=epoch
)
epoch_csv.flush()
make_checkpoint(_accelerator=accelerator, _epoch=epoch + 1, _step=0)
avg_val_loss = val_loop(
dataloader=val_dataloader, _epoch=epoch, aug=False
)
avg_val_loss_aug = val_loop(
dataloader=val_dataloader, _epoch=epoch, aug=True
)
if accelerator.is_main_process:
epoch_writer.writerow(
[epoch, avg_train_loss, avg_val_loss, avg_val_loss_aug]
)
epoch_csv.flush()
make_checkpoint(
_accelerator=accelerator, _epoch=epoch + 1, _step=0
)
except Exception as e:
logger.debug(traceback.format_exc())
raise e

logging.shutdown()
if accelerator.is_main_process:
Expand Down
Loading