利用 语义分割信息 和 几何信息得到的 动/静分割信息,剔除部分不可靠的 关键点来使得 跟踪 变得更可靠
使用mask-rcnn获取 语义分割信息
使用 运动点 判断准则 获取 动/静 mask
结合 语义mask 和 动/静 mask 生成 需要剔除的 mask
在构造帧 的时候 对 提取的关键点 进行滤波,删除 不可靠的 关键点,使得 跟踪更可靠
1. 是否可以 结合 光流 来生成 动/静 mask ,不过要考虑相机自身的运动引起的光流
2. 如果用于导航,仅仅依靠orb关键点,数量不够,是否可以 添加 边缘 关键点检测算法
DynaSLAM is a visual SLAM system that is robust in dynamic scenarios for monocular, stereo and RGB-D configurations. Having a static map of the scene allows inpainting the frame background that has been occluded by such dynamic objects.
DynaSLAM: Tracking, Mapping and Inpainting in Dynamic Scenes
Berta Bescos, José M. Fácil, Javier Civera and José Neira
RA-L and IROS, 2018
We provide examples to run the SLAM system in the TUM dataset as RGB-D or monocular, and in the KITTI dataset as stereo or monocular.
从关键帧数据库(最多20个)中获取当前帧的参考帧:
差异性: 和当前帧 欧拉角度差平方 + 平移量差平方
利用各自最大最小值 归一化后,使用加权求和 vDist = 0.7*vDist + 0.3*vRot
对差异性进行排序: DESCENDING 降序排列
选取 前面 (差异性最大的) 作为参考帧 (最多5个)
// 提取动态点=============这是不是可以考虑用光流来计算动态点===============
// 1. 选取 参考帧关键点 深度(0~6m) 计算参考帧下3d点 再变换到 世界坐标系下
// 2. 保留 当前帧 到 世界点 向量 与 参考帧到世界点向量 夹角 小于30的点, 不会太近的点
// 3. 保留世界点 反投影到当前帧坐标系下深度值 <7m的点
// 4. 保留世界点 反投影到当前帧像素坐标系下 浓缩平面( 20~620 & 20~460=)内的点,且该点,当前帧深度!=0
// 5. 根据投影点深度值和其 周围20×20领域点当前帧深度值 筛选出 深度差值较小的 领域点 的深度值 来更新当前帧 深度值
// 6. 点投影深度值 和 特征点当前帧下深度 差值过大,且该点周围深度方差小,确定该点为运动点
Frame.cc Frame.h 根据传入的 mask 对提取的关键点进行滤波,剔除部分不可靠的点
Tracking.cc
双目/单目 仅仅依靠 语义mask 过滤关键点
RGBD 结合 语义mask 和 动/静mask 来 过滤关键点
具体做法 先根据 运动模型 轻量级 跟踪 获取当前帧位姿态,使用 运动点 判断准则 获取 和 动/静mask
其他 添加了 c++ 调用 python 程序的 文件
双目 左右图的 语义检测,直接将 两张图 拼接在一起 输入到网络,获取的语义结果再分开
这样 检测时间上不会增加多少,因为都会缩放到 网络固定的尺寸进行检测,不过检测精度有所损失,但是速度快啊,这个idear赞
- Install ORB-SLAM2 prerequisites: C++11 or C++0x Compiler, Pangolin, OpenCV 2.4.11 and Eigen3 (https://github.com/raulmur/ORB_SLAM2).
- Install boost libraries with the command
sudo apt-get install libboost-all-dev
. - Install python3, keras and tensorflow, and download the
mask_rcnn_coco.h5
model from this GitHub repository: https://github.com/matterport/Mask_RCNN/releases. - Clone this repo:
git clone [email protected]:BertaBescos/DynaSLAM.git
cd DynaSLAM
cd DynaSLAM
chmod +x build.sh
./build.sh
- Place the
mask_rcnn_coco.h5
model in the folderDynaSLAM/src/python/
.
-
Download a sequence from http://vision.in.tum.de/data/datasets/rgbd-dataset/download and uncompress it.
-
Associate RGB images and depth images executing the python script associate.py:
python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt
These associations files are given in the folder ./Examples/RGB-D/associations/
for the TUM dynamic sequences.
-
Execute the following command. Change
TUMX.yaml
to TUM1.yaml,TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences respectively. ChangePATH_TO_SEQUENCE_FOLDER
to the uncompressed sequence folder. ChangeASSOCIATIONS_FILE
to the path to the corresponding associations file.PATH_TO_MASKS
andPATH_TO_OUTPUT
are optional parameters../Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE (PATH_TO_MASKS) (PATH_TO_OUTPUT)
If PATH_TO_MASKS
and PATH_TO_OUTPUT
are not provided, only the geometrical approach is used to detect dynamic objects.
If PATH_TO_MASKS
is provided, Mask R-CNN is used to segment the potential dynamic content of every frame. These masks are saved in the provided folder PATH_TO_MASKS
. If this argument is no_save
, the masks are used but not saved. If it finds the Mask R-CNN computed dynamic masks in PATH_TO_MASKS
, it uses them but does not compute them again.
If PATH_TO_OUTPUT
is provided, the inpainted frames are computed and saved in PATH_TO_OUTPUT
.
-
Download the dataset (grayscale images) from http://www.cvlibs.net/datasets/kitti/eval_odometry.php
-
Execute the following command. Change
KITTIX.yaml
to KITTI00-02.yaml, KITTI03.yaml or KITTI04-12.yaml for sequence 0 to 2, 3, and 4 to 12 respectively. ChangePATH_TO_DATASET_FOLDER
to the uncompressed dataset folder. ChangeSEQUENCE_NUMBER
to 00, 01, 02,.., 11. By providing the last argumentPATH_TO_MASKS
, dynamic objects are detected with Mask R-CNN.
./Examples/Stereo/stereo_kitti Vocabulary/ORBvoc.txt Examples/Stereo/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER (PATH_TO_MASKS)
-
Download a sequence from http://vision.in.tum.de/data/datasets/rgbd-dataset/download and uncompress it.
-
Execute the following command. Change
TUMX.yaml
to TUM1.yaml,TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences respectively. ChangePATH_TO_SEQUENCE_FOLDER
to the uncompressed sequence folder. By providing the last argumentPATH_TO_MASKS
, dynamic objects are detected with Mask R-CNN.
./Examples/Monocular/mono_tum Vocabulary/ORBvoc.txt Examples/Monocular/TUMX.yaml PATH_TO_SEQUENCE_FOLDER (PATH_TO_MASKS)
-
Download the dataset (grayscale images) from http://www.cvlibs.net/datasets/kitti/eval_odometry.php
-
Execute the following command. Change
KITTIX.yaml
by KITTI00-02.yaml, KITTI03.yaml or KITTI04-12.yaml for sequence 0 to 2, 3, and 4 to 12 respectively. ChangePATH_TO_DATASET_FOLDER
to the uncompressed dataset folder. ChangeSEQUENCE_NUMBER
to 00, 01, 02,.., 11. By providing the last argumentPATH_TO_MASKS
, dynamic objects are detected with Mask R-CNN.
./Examples/Monocular/mono_kitti Vocabulary/ORBvoc.txt Examples/Monocular/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER (PATH_TO_MASKS)
If you use DynaSLAM in an academic work, please cite:
@article{bescos2018dynaslam,
title={{DynaSLAM}: Tracking, Mapping and Inpainting in Dynamic Environments},
author={Bescos, Berta, F\'acil, JM., Civera, Javier and Neira, Jos\'e},
journal={IEEE RA-L},
year={2018}
}
Our code builds on ORB-SLAM2.