Skip to content

Commit

Permalink
Add performance benchmarking scripts (projectmesa#1979)
Browse files Browse the repository at this point in the history
* benchmarks: Upload initial models from JuliaDynamics

https://github.com/JuliaDynamics/ABMFrameworksComparison/tree/5551d7abf1611d377b3b32346c7774f176af4c65

* benchmarks: Add dictionary with configurations

* benchmarks: Update configurations, use relative imports

* benchmarks: Add single script to run all benchmarks

* benchmarks: Update configurations

Few less replications, some more seeds. Every benchmark now takes between 10 and 20 seconds (on my machine).

* benchmarks: Add generated pickle files to gitignore

That allows switching branches without benchmarks results disappearing

* benchmarks: Update global script to calculate and save stuff

Prints some stuff when running and saves a pickle file after running.

* benchmarks: Write a script to statistically compare runs

- The bootstrap_speedup_confidence_interval function calculates the mean speedup and its confidence interval using bootstrapping, which is more suitable for paired data.
- The mean speedup and confidence interval are calculated for both initialization and run times.
- Positive values indicate an increase in time (longer duration), and negative values indicate a decrease (shorter duration).
- The results are displayed in a DataFrame with the percentage changes and their confidence intervals.

* benchmarks: Remove seperate benchmark scripts

* benchmarks: Black and ruff

* benchmarks: Use old f-string formatting to work with Python 3.11 and older

* benchmarks: Add fancy colored performance indicators 🟢🔴🔵

If the 95% confidence interval is:
- fully below -3%: 🟢
- fully above +3%: 🔴
- else: 🔵

* Fix typos caught by codespell

* Apply ruff format benchmarks/

* Apply ruff --fix benchmarks/

* Apply ruff --fix --unsafe-fixes benchmarks/

* Apply manual Ruff fixes

* codecov: Ignore benchmarks/

---------

Co-authored-by: rht <[email protected]>
  • Loading branch information
EwoutH and rht authored Jan 20, 2024
1 parent 0bd481d commit 8973d56
Show file tree
Hide file tree
Showing 14 changed files with 739 additions and 1 deletion.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
# Benchmarking
benchmarking/**/*.pickle

# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
Expand Down
80 changes: 80 additions & 0 deletions benchmarks/Flocking/Flocking.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
"""
Flockers
=============================================================
A Mesa implementation of Craig Reynolds's Boids flocker model.
Uses numpy arrays to represent vectors.
"""

import numpy as np

from mesa import Model
from mesa.space import ContinuousSpace
from mesa.time import RandomActivation

from .boid import Boid


class BoidFlockers(Model):
"""
Flocker model class. Handles agent creation, placement and scheduling.
"""

def __init__(
self,
seed,
population,
width,
height,
vision,
speed=1,
separation=1,
cohere=0.03,
separate=0.015,
match=0.05,
):
"""
Create a new Flockers model.
Args:
population: Number of Boids
width, height: Size of the space.
speed: How fast should the Boids move.
vision: How far around should each Boid look for its neighbors
separation: What's the minimum distance each Boid will attempt to
keep from any other
cohere, separate, match: factors for the relative importance of
the three drives."""
super().__init__(seed=seed)
self.population = population
self.vision = vision
self.speed = speed
self.separation = separation
self.schedule = RandomActivation(self)
self.space = ContinuousSpace(width, height, True)
self.factors = {"cohere": cohere, "separate": separate, "match": match}
self.make_agents()

def make_agents(self):
"""
Create self.population agents, with random positions and starting headings.
"""
for i in range(self.population):
x = self.random.random() * self.space.x_max
y = self.random.random() * self.space.y_max
pos = np.array((x, y))
velocity = np.random.random(2) * 2 - 1
boid = Boid(
i,
self,
pos,
self.speed,
velocity,
self.vision,
self.separation,
**self.factors,
)
self.space.place_agent(boid, pos)
self.schedule.add(boid)

def step(self):
self.schedule.step()
Empty file added benchmarks/Flocking/__init__.py
Empty file.
81 changes: 81 additions & 0 deletions benchmarks/Flocking/boid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import numpy as np

from mesa import Agent


class Boid(Agent):
"""
A Boid-style flocker agent.
The agent follows three behaviors to flock:
- Cohesion: steering towards neighboring agents.
- Separation: avoiding getting too close to any other agent.
- Alignment: try to fly in the same direction as the neighbors.
Boids have a vision that defines the radius in which they look for their
neighbors to flock with. Their speed (a scalar) and velocity (a vector)
define their movement. Separation is their desired minimum distance from
any other Boid.
"""

def __init__(
self,
unique_id,
model,
pos,
speed,
velocity,
vision,
separation,
cohere=0.03,
separate=0.015,
match=0.05,
):
"""
Create a new Boid flocker agent.
Args:
unique_id: Unique agent identifier.
pos: Starting position
speed: Distance to move per step.
heading: numpy vector for the Boid's direction of movement.
vision: Radius to look around for nearby Boids.
separation: Minimum distance to maintain from other Boids.
cohere: the relative importance of matching neighbors' positions
separate: the relative importance of avoiding close neighbors
match: the relative importance of matching neighbors' headings
"""
super().__init__(unique_id, model)
self.pos = np.array(pos)
self.speed = speed
self.velocity = velocity
self.vision = vision
self.separation = separation
self.cohere_factor = cohere
self.separate_factor = separate
self.match_factor = match

def step(self):
"""
Get the Boid's neighbors, compute the new vector, and move accordingly.
"""

neighbors = self.model.space.get_neighbors(self.pos, self.vision, False)
n = 0
match_vector, separation_vector, cohere = np.zeros((3, 2))
for neighbor in neighbors:
n += 1
heading = self.model.space.get_heading(self.pos, neighbor.pos)
cohere += heading
if self.model.space.get_distance(self.pos, neighbor.pos) < self.separation:
separation_vector -= heading
match_vector += neighbor.velocity
n = max(n, 1)
cohere = cohere * self.cohere_factor
separation_vector = separation_vector * self.separate_factor
match_vector = match_vector * self.match_factor
self.velocity += (cohere + separation_vector + match_vector) / n
self.velocity /= np.linalg.norm(self.velocity)
new_pos = self.pos + self.velocity * self.speed
self.model.space.move_agent(self, new_pos)
77 changes: 77 additions & 0 deletions benchmarks/Schelling/Schelling.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
import random

from mesa import Agent, Model
from mesa.space import SingleGrid
from mesa.time import RandomActivation


class SchellingAgent(Agent):
"""
Schelling segregation agent
"""

def __init__(self, pos, model, agent_type):
"""
Create a new Schelling agent.
Args:
unique_id: Unique identifier for the agent.
x, y: Agent initial location.
agent_type: Indicator for the agent's type (minority=1, majority=0)
"""
super().__init__(pos, model)
self.pos = pos
self.type = agent_type

def step(self):
similar = 0
r = self.model.radius
for neighbor in self.model.grid.iter_neighbors(self.pos, moore=True, radius=r):
if neighbor.type == self.type:
similar += 1

# If unhappy, move:
if similar < self.model.homophily:
self.model.grid.move_to_empty(self)
else:
self.model.happy += 1


class SchellingModel(Model):
"""
Model class for the Schelling segregation model.
"""

def __init__(
self, seed, height, width, homophily, radius, density, minority_pc=0.5
):
""" """
super().__init__(seed=seed)
self.height = height
self.width = width
self.density = density
self.minority_pc = minority_pc
self.homophily = homophily
self.radius = radius

self.schedule = RandomActivation(self)
self.grid = SingleGrid(height, width, torus=True)

self.happy = 0

# Set up agents
# We use a grid iterator that returns
# the coordinates of a cell as well as
# its contents. (coord_iter)
for _cont, pos in self.grid.coord_iter():
if random.random() < self.density: # noqa: S311
agent_type = 1 if random.random() < self.minority_pc else 0 # noqa: S311
agent = SchellingAgent(pos, self, agent_type)
self.grid.place_agent(agent, pos)
self.schedule.add(agent)

def step(self):
"""
Run one step of the model.
"""
self.happy = 0 # Reset counter of happy agents
self.schedule.step()
Empty file.
103 changes: 103 additions & 0 deletions benchmarks/WolfSheep/WolfSheep.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
"""
Wolf-Sheep Predation Model
================================
Replication of the model found in NetLogo:
Wilensky, U. (1997). NetLogo Wolf Sheep Predation model.
http://ccl.northwestern.edu/netlogo/models/WolfSheepPredation.
Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.
"""

import mesa
from mesa.space import MultiGrid
from mesa.time import RandomActivationByType

from .agents import GrassPatch, Sheep, Wolf


class WolfSheep(mesa.Model):
"""
Wolf-Sheep Predation Model
A model for simulating wolf and sheep (predator-prey) ecosystem modelling.
"""

def __init__(
self,
seed,
height,
width,
initial_sheep,
initial_wolves,
sheep_reproduce,
wolf_reproduce,
grass_regrowth_time,
wolf_gain_from_food=13,
sheep_gain_from_food=5,
):
"""
Create a new Wolf-Sheep model with the given parameters.
Args:
initial_sheep: Number of sheep to start with
initial_wolves: Number of wolves to start with
sheep_reproduce: Probability of each sheep reproducing each step
wolf_reproduce: Probability of each wolf reproducing each step
wolf_gain_from_food: Energy a wolf gains from eating a sheep
grass: Whether to have the sheep eat grass for energy
grass_regrowth_time: How long it takes for a grass patch to regrow
once it is eaten
sheep_gain_from_food: Energy sheep gain from grass, if enabled.
"""
super().__init__(seed=seed)
# Set parameters
self.height = height
self.width = width
self.initial_sheep = initial_sheep
self.initial_wolves = initial_wolves
self.sheep_reproduce = sheep_reproduce
self.wolf_reproduce = wolf_reproduce
self.wolf_gain_from_food = wolf_gain_from_food
self.grass_regrowth_time = grass_regrowth_time
self.sheep_gain_from_food = sheep_gain_from_food

self.schedule = RandomActivationByType(self)
self.grid = MultiGrid(self.height, self.width, torus=False)

# Create sheep:
for _i in range(self.initial_sheep):
pos = (
self.random.randrange(self.width),
self.random.randrange(self.height),
)
energy = self.random.randrange(2 * self.sheep_gain_from_food)
sheep = Sheep(self.next_id(), pos, self, True, energy)
self.grid.place_agent(sheep, pos)
self.schedule.add(sheep)

# Create wolves
for _i in range(self.initial_wolves):
pos = (
self.random.randrange(self.width),
self.random.randrange(self.height),
)
energy = self.random.randrange(2 * self.wolf_gain_from_food)
wolf = Wolf(self.next_id(), pos, self, True, energy)
self.grid.place_agent(wolf, pos)
self.schedule.add(wolf)

# Create grass patches
possibly_fully_grown = [True, False]
for _agent, pos in self.grid.coord_iter():
fully_grown = self.random.choice(possibly_fully_grown)
if fully_grown:
countdown = self.grass_regrowth_time
else:
countdown = self.random.randrange(self.grass_regrowth_time)
patch = GrassPatch(self.next_id(), pos, self, fully_grown, countdown)
self.grid.place_agent(patch, pos)
self.schedule.add(patch)

def step(self):
self.schedule.step()
Empty file.
Loading

0 comments on commit 8973d56

Please sign in to comment.