-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
d ébut de chapitre sur les espaces L^p
- Loading branch information
Showing
4 changed files
with
70 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
\documentclass{article} | ||
|
||
\newif\ifsolo | ||
\solotrue | ||
\input{src/preamble.tex} | ||
|
||
\begin{document} | ||
|
||
\input{src/integration-04.tex} | ||
|
||
\printindex | ||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
\ifsolo | ||
~ | ||
|
||
\vspace{1cm} | ||
|
||
\begin{center} | ||
\textbf{\LARGE Espace \texorpdfstring{$\L^p$}{L^p}} \\[1em] | ||
\end{center} | ||
\tableofcontents | ||
\else | ||
\chapter{Espace \texorpdfstring{$\L^p$}{L^p}} | ||
|
||
\minitoc | ||
\fi | ||
\thispagestyle{empty} | ||
|
||
\begin{dfn} | ||
Soit $(X, \mathcal A, \mu)$ un espace mesuré. On note, pour $f:X\longrightarrow \R$ mesurable et pour $p>1$, \[ | ||
\|f\|_p= \left( \int_X |f|^p\diff \mu\right)^{\sfrac1p} | ||
\] | ||
et \[ | ||
\|f\|_{\infty}=\inf \left\{ M\geq 0, \quad |f|\leq M \;\mu-\text{pp} \right\} | ||
\] | ||
On note pour $p \in [1, +\infty]$, $\mathcal L^p(X, \mathcal A, \mu)$ l'ensemble des fonctions mesurables $f:X \longrightarrow \R$ telles que $\|f\|_p<+\infty$. Sur cet ensemble, on définit $\sim$ la relation d'équivalence d'égalité $\mu$-presque partout et on appelle $\L^p(X, \mathcal A, \mu)=\mathcal L^p(X, \mathcal A, \mu) / \sim$. | ||
\end{dfn} | ||
|
||
\begin{rem} | ||
On travaillera indifféremment avec des fonctions ou des classes d'équivalences avec la même notation. | ||
\end{rem} | ||
|
||
\section{Rappel sur les fonctions convexes} | ||
|
||
\begin{dfn} | ||
Si $I$ est un intervalle de $ \R$, une application $\varphi : I \longrightarrow \R$ est convexe si l'une des deux propriétés équivalentes suivantes est vérifiée: \[ | ||
\forall x, y \in I, \forall t \in [0,1], \varphi((1-t)x+ty)\leq (1-t)\varphi(x)+t\varphi(y) | ||
\] | ||
\[ | ||
\forall x,y,z \in I, x<y<z \implies \frac{\varphi(y)-\varphi(x)}{y-x}\leq \frac{\varphi(z)-\varphi(x)}{z-x}\leq \frac{\varphi(z)-\varphi(y)}{z-y} | ||
\] | ||
\end{dfn} | ||
|
||
\begin{rem} | ||
Si $\varphi$ est $\mathcal C^1$, alors elle est convexe si et seulement si $\varphi'$ est croissante. | ||
\end{rem} | ||
|
||
\begin{prop} | ||
Si $\varphi$ est convexe alors \[ | ||
\varphi(x)= \sup \left\{ ax+b, \quad a,b \in \R, ay+b\leq \varphi(x), \forall y \in I \right\} | ||
\] | ||
\end{prop} | ||
|
||
\begin{prop}[Inégalité de Jensen\index{Jensen (inégalité)}] | ||
Soit $(X, \mathcal A, \mu)$ un espace mesuré tel que $\mu(X)=1$, et $f:X\longrightarrow I$ intégrable avec $I$ un intervalle réel. Soit $\varphi$ convexe telle que $\varphi\circ f$ est intégrable. Alors, \[ | ||
\varphi \left( \int_X f\diff \mu \right) \leq \int_X \phi\circ f\diff \mu | ||
\] | ||
\end{prop} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters