-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
96 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
\documentclass{article} | ||
|
||
\newif\ifsolo | ||
\solotrue | ||
\input{src/preamble.tex} | ||
|
||
\begin{document} | ||
|
||
\input{src/integration-07.tex} | ||
|
||
\printindex | ||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
\ifsolo | ||
~ | ||
|
||
\vspace{1cm} | ||
|
||
\begin{center} | ||
\textbf{\LARGE Formule de changement de variables} \\[1em] | ||
\end{center} | ||
\tableofcontents | ||
\else | ||
\chapter{Formule de changement de variables} | ||
|
||
\minitoc | ||
\fi | ||
\thispagestyle{empty} | ||
|
||
\begin{thm} | ||
Soit $U, D$ deux ouverts de $\R^d$ et $\varphi : U \longrightarrow D$ un $\mathcal C^1$-difféomorphisme. Si $f : D \longrightarrow \R_+$ est borélienne, \[ | ||
\int_D f(x)\diff x = \int_U f(\varphi(u))J_{\varphi}(u)\diff u | ||
\] | ||
où \[ | ||
J_\varphi(u)=|\det \diff \varphi_u|\neq 0 | ||
\] | ||
On peut aussi l'écrire \[ | ||
\int_Df(x)\frac{\diff x}{J_\varphi(\varphi^{-1}(x))}=\int_U f(\varphi(u))\diff u | ||
\] | ||
En dimension $1$, on reconnaît \[ | ||
\int_a^b f(x)\diff x = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)}f(\varphi(u))\varphi'(u)\diff u | ||
\] | ||
avec $\varphi$ strictement monotone et $\mathcal C^1$ | ||
\end{thm} | ||
|
||
\begin{lmm} | ||
Soit $M \in \GL_d(\R)$ et $b \in \R^d$. Alors, si $\varphi(x)=Mx+b$, alors $\forall A \in \mathcal B(\R^d)$, \[ | ||
\lambda(\varphi(A))= |\det M|\lambda(A) | ||
\] | ||
\end{lmm} | ||
|
||
\begin{rem} | ||
C'est vrai même si $M$ n'est pas inversible (l'image est dans un hyperplan affine de mesure nulle) | ||
\end{rem} | ||
|
||
\begin{proof}[Preuve du lemme] | ||
On a que $\varphi(A)= (\varphi^{-1})^{-1}(A)$ or $\varphi^{-1}$ est mesurable donc $\varphi(A)$ est un borélien. Par ailleurs, $A \longmapsto \lambda(\varphi(A))$ est une mesure (la mesure image de $ \lambda$ par $\varphi^{-1}$), et de plus: \[ | ||
\lambda(\varphi(A+a))=\lambda(M(A+a)+b)=\lambda(MA+b)=\lambda(\varphi(A)) | ||
\] | ||
donc $ \lambda \circ \varphi=c\lambda$ pour un $c$ à déterminer. L'invariance par translation permet de supposer $b=0$. | ||
\begin{itemize} | ||
\item Si $M$ est orthogonale, alors $c\lambda(\B(0,1))=\lambda(M\B(0,1))=\lambda(\B(0,1))$ donc $c=1=|\det M|$ | ||
\item Si $ M \in \S_n^{++}$, on peut l'écrire $M=P\Delta \transpose P$ avec $P$ orthogonale et $\Delta = \diag(a_1, \cdots , a_d)$ avec les $a_i>0$. Alors, | ||
\begin{align*} | ||
\lambda\left(MP[0,1]^d\right) &=\lambda\left(P\Delta[0,1]^d\right) \\&=\lambda\left(P\prod_{i=1}^d [0,a_i]\right) \\&= \lambda\left(\prod_{i=1}^d[0,a_i]\right) \\&= a_1\times \cdots \times a_d \\&= |\det\left(M\right)|\\&= |\det\left(M\right)| \lambda\left(P[0,1]^d\right) | ||
\end{align*} | ||
donc $c=|\det M|$ | ||
\item Si $ M \in \GL_d(\R)$, on peut l'écrire $M=PS$ avec $P $ orthogonale et $S$ symétrique définie positive. \[ | ||
\lambda(\varphi(A)) =\lambda(PSA)= \lambda(SA) =|\det(S)| \lambda(A) = |\det(PS)| \lambda(A) | ||
\] | ||
donc $c=|\det M|$ | ||
\end{itemize} | ||
\end{proof} | ||
|
||
\begin{proof}[Idée de preuve dans le cas général] | ||
On se ramène localement au cas affine. Pour cela, on exploite le résultat suivant: Si $K\subset U$ est compact, alors \[ | ||
\forall \epsilon>0, \exists \delta>0, \forall \alpha<\delta, \forall u_0 \in K, \quad (1-\epsilon)J_{\varphi}(u_0) \lambda(C)\leq \lambda(\varphi(C))\leq (1+\epsilon)J_{\varphi}(u_0)\lambda(C) | ||
\] | ||
où $C = u_0+]-\sfrac\alpha2,\sfrac\alpha2[^d$. | ||
|
||
Ensuite, on considère $C_n$ l'ensemble des cubes de la forme \[ | ||
\prod_{i=1}^d ]ki 2^{-n}, (k+1)i2^{-n}[ | ||
\] | ||
On se donne $C_0 \in \mathcal C_{n_0}$, et \[ | ||
\lambda(\varphi(C_0))=\sum_{C\in \mathcal{C}_n, C\subseteq C_0} \lambda(\varphi(C)) | ||
\] | ||
Par le lemme, il existe $n$ tel que \[ | ||
\lambda(\varphi(C_0)) \leq (1+\epsilon) \sum_{C\in \mathcal{C}_n, C\subseteq C_0} J_{\varphi}(u_c)\lambda(C) \leq (1+\epsilon)^2 \sum_{C\in \mathcal{C}_n,C\subseteq C_0} \int_C J_\varphi(u)\diff u = (1+\epsilon)^2 \int_{C_0} J_\varphi(u)\diff u | ||
\] | ||
On minore de la même manière et $\epsilon>0$ étant arbitraire, on conclut que \[ | ||
\lambda(\phi(C_0))= \int_{C_0} J_\varphi(u)\diff u | ||
\] | ||
et donc par le lemme de Dynkin et en approchant par des fonctions simples, \[ | ||
\lambda(\phi(A))= \int_AJ_{\varphi}(u)\diff u | ||
\] | ||
\end{proof} |