-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
supression du chapitre 0 sur la denombrabilité, début de chapitre sur
les mesures complexes
- Loading branch information
Showing
5 changed files
with
72 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
\documentclass{article} | ||
|
||
\newif\ifsolo | ||
\solotrue | ||
\input{src/preamble.tex} | ||
|
||
\begin{document} | ||
|
||
\input{src/integration-06.tex} | ||
|
||
\printindex | ||
\end{document} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
\ifsolo | ||
~ | ||
|
||
\vspace{1cm} | ||
|
||
\begin{center} | ||
\textbf{\LARGE Mesures complexes} \\[1em] | ||
\end{center} | ||
\tableofcontents | ||
\else | ||
\chapter{Mesures complexes} | ||
|
||
\minitoc | ||
\fi | ||
\thispagestyle{empty} | ||
|
||
\section{Définitions et propriétés de base} | ||
|
||
\begin{dfn} | ||
Soit $(X, \mathcal A)$ un espace mesurable. Une mesure complexe\index{mesure complexe} sur $(X, \mathcal A)$ est une fonction $\nu: \mathcal A \longrightarrow \C$ telle que \begin{itemize} | ||
\item $\nu(\emptyset)=0$ | ||
\item Si $(A_i)_{i \in I}$ est une famille dénombrable d'éléments de $\mathcal A$ deux à deux disjoints, \[ | ||
\nu \left( \bigcup_{i \in I} A_i\right) = \sum_{i \in I}\nu(A_i) | ||
\] | ||
où la convergence est supposée indépendante du choix d'ordre sur $I$ | ||
\end{itemize} | ||
\end{dfn} | ||
|
||
\begin{rem} | ||
On admet que l'indépendance par permutation de la convergence entraine la convergence absolue. | ||
\end{rem} | ||
|
||
\begin{ex} | ||
Soit $(X, \mathcal A, \mu)$ un espace mesuré avec $\mu$ une mesure usuelle positive, et soit $f \in \L^1_{\C}(X, \mathcal A, \mu)$. Alors \[ | ||
\nu(\mathcal A)=\int_A f\diff \mu | ||
\] | ||
est une mesure complexe (notée $f\diff \mu$). Clairement, $\nu(\emptyset)=0$ et \[ | ||
\nu \left(\bigcup_{n \in \N}A_n)=\int_{X}f\diff \mu \1_{\bigcup A_i}=\int_{X}\sum_{n \in \N}\underbrace{f\1_{A_n}}_{\mathclap{\text{dominée par }|f|\text{ intégrable }}}\diff \mu = \sum_{n \in N}\int_{A_n} f\diff \mu=\sum_{n \in \N}\nu(A_n) | ||
\] | ||
\end{ex} | ||
|
||
\begin{dfn} | ||
Soit $\nu$ une mesure complexe. La mesure de variation totale de $\nu$ \index{variation totale (mesure)} est la fonction $|\nu|:\mathcal A \longrightarrow \R_+\cup \left\{ \infty \right\} $ définie par \[ | ||
|\nu|(A) = \sup \left\{ \sum_{i \in N}|\nu(A_i)|, \quad (A_i)_{i \in \N} \text{ deux à deux disjoints, d'union } A\right\} | ||
\] | ||
\end{dfn} | ||
|
||
\begin{prop} | ||
Si $\nu$ est une mesure complexe, alors $|\nu|$ est une mesure. | ||
\end{prop} | ||
|
||
\begin{proof} | ||
|
||
\end{proof} |