Skip to content

FlyEgle/imageclassification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ImageClassification

1. Introduction

This repo is only used for image classification task, such as imagenet. Include ddp training and inference, calculate the real acc and so on.

2. Enveriments

  • python 3.7+
  • pytorch 1.7.1
  • pillow
  • apex
  • opencv-python

You can see this repo to find how to install the apex

3. Training & Inference

  • dataset prepare
    /data/home/imagenet/xxx.jpeg, 0
    /data/home/imagenet/xxx.jpeg, 1
    ...
    /data/home/imagenet/xxx.jpeg, 999
    
  • training
    1. Only used FP16 with bn FP32
      #!/bin/bash
      OMP_NUM_THREADS=1
      MKL_NUM_THREADS=1
      export OMP_NUM_THREADS
      export MKL_NUM_THREADS
      cd ImageClassification;
      CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -W ignore -m torch.distributed.launch --nproc_per_node 8 train_lanuch.py \
      --batch_size 512 \
      --num_workers 48 \
      --lr 1.6 \
      --max_epochs 90 \
      --warmup_epochs 5 \
      --num-classes 1000 \
      --input_size 256 \
      --crop_size 224 \
      --FP16 1 \
      --mode O2 \
      --apex 0 \
      --amp 0 \
      --train_file $train_file \
      --val_file $val_file \
      --log-dir $log_dir \
      --checkpoints-path $ckpt_dir
    2. Use Apex training
      #!/bin/bash
      OMP_NUM_THREADS=1
      MKL_NUM_THREADS=1
      export OMP_NUM_THREADS
      export MKL_NUM_THREADS
      cd ImageClassification;
      CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -W ignore -m torch.distributed.launch --nproc_per_node 8 train_lanuch.py \
      --batch_size 512 \
      --num_workers 48 \
      --lr 1.6 \
      --max_epochs 90 \
      --warmup_epochs 5 \
      --num-classes 1000 \
      --input_size 256 \
      --crop_size 224 \
      --FP16 0 \
      --mode O1 \
      --apex 1 \
      --amp 0 \
      --train_file $train_file \
      --val_file $val_file \
      --log-dir $log_dir \
      --checkpoints-path $ckpt_dir
    3. Use pytorch amp training
      #!/bin/bash
      OMP_NUM_THREADS=1
      MKL_NUM_THREADS=1
      export OMP_NUM_THREADS
      export MKL_NUM_THREADS
      cd ImageClassification;
      CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -W ignore -m torch.distributed.launch --nproc_per_node 8 train_lanuch.py \
      --batch_size 512 \
      --num_workers 48 \
      --lr 1.6 \
      --max_epochs 90 \
      --warmup_epochs 5 \
      --num-classes 1000 \
      --input_size 256 \
      --crop_size 224 \
      --FP16 1 \
      --mode O2 \
      --apex 0 \
      --amp 1 \
      --train_file $train_file \
      --val_file $val_file \
      --log-dir $log_dir \
      --checkpoints-path $ckpt_dir
  • inference
    #!/bin/bash
    cd ImageClassification;
    CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -W ignore test.py \
    --dist-url 'tcp://127.0.0.1:9966' \
    --dist-backend 'nccl' \
    --multiprocessing-distributed=1 \
    --world-size=1 \
    --rank=0 \
    --test_file $test_file \
    --batch-size 128 \
    --num-workers 48 \
    --num-classes 1000 \
    --swin 0 \
    --checkpoints-path $ckpt_path \
    --save_folder $logits_folder
  • calculate acc
python utils/calculate_acc.py --logits_file $logits_folder

About

General Image Classification Code base

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published