Skip to content

Commit

Permalink
Changed inbook references to book format + added chapter and pages in…
Browse files Browse the repository at this point in the history
… the text
  • Loading branch information
aleexarias committed Jan 12, 2025
1 parent 80ebc2a commit 1147336
Show file tree
Hide file tree
Showing 15 changed files with 241 additions and 151 deletions.
114 changes: 8 additions & 106 deletions docs/refs.bib
Original file line number Diff line number Diff line change
Expand Up @@ -223,29 +223,11 @@ @article{febrero-bande+oviedodelafuente_2012_statistical
keywords = {depth measures,functional data regression,non-parametric kernel estimation,outlier,representation of functional data}
}

@inbook{ferraty+vieu_2006_computational,
title = {Computational Issues},
booktitle = {Nonparametric Functional Data Analysis: Theory and Practice},
@book{ferraty+vieu_2006,
title = {Nonparametric Functional Data Analysis: Theory and Practice},
author = {Ferraty, Fr{\'e}d{\'e}ric and Vieu, Philippe},
year = {2006},
series = {Springer {{Series}} in {{Statistics}}},
pages = {99--108},
publisher = {{Springer-Verlag}},
address = {{New York}},
url = {https://www.springer.com/gp/book/9780387303697},
urldate = {2019-09-10},
collaborator = {Ferraty, Fr{\'e}d{\'e}ric and Vieu, Philippe},
isbn = {978-0-387-30369-7},
langid = {english}
}

@inbook{ferraty+vieu_2006_functional,
title = {Functional Nonparametric Prediction Methodologies},
booktitle = {Nonparametric Functional Data Analysis: Theory and Practice},
author = {Ferraty, Fr{\'e}d{\'e}ric and Vieu, Philippe},
year = {2006},
series = {Springer {{Series}} in {{Statistics}}},
pages = {49--59},
publisher = {{Springer-Verlag}},
address = {{New York}},
url = {https://www.springer.com/gp/book/9780387303697},
Expand Down Expand Up @@ -436,52 +418,12 @@ @inproceedings{ramos-carreno++_2022_scikitfda
keywords = {Data analysis,data visualization,Data visualization,Documentation,Ecosystems,Extrapolation,functional data analysis,Interpolation,machine learning,Machine learning,Python toolbox}
}

@inbook{ramsay+silverman_2005_functionala,
title = {From Functional Data to Smooth Functions},
booktitle = {Functional Data Analysis},
author = {Ramsay, James and Silverman, Bernard W.},
year = {2005},
series = {Springer {{Series}} in {{Statistics}}},
edition = {Second},
pages = {37--58},
publisher = {{Springer-Verlag}},
address = {{New York}},
doi = {10.1007/b98888},
url = {https://www.springer.com/gp/book/9780387400808},
urldate = {2021-09-19},
collaborator = {Ramsay, James and Silverman, Bernard W.},
isbn = {978-0-387-40080-8},
langid = {english},
keywords = {Multivariate analysis}
}

@inbook{ramsay+silverman_2005_introduction,
title = {Introduction},
booktitle = {Functional Data Analysis},
author = {Ramsay, James and Silverman, Bernard W.},
year = {2005},
series = {Springer {{Series}} in {{Statistics}}},
edition = {Second},
pages = {1--18},
publisher = {{Springer-Verlag}},
address = {{New York}},
doi = {10.1007/b98888},
url = {https://www.springer.com/gp/book/9780387400808},
urldate = {2021-09-19},
collaborator = {Ramsay, James and Silverman, Bernard W.},
isbn = {978-0-387-40080-8},
langid = {english},
keywords = {Multivariate analysis}
}

@inbook{ramsay+silverman_2005_registration,
title = {The Registration and Display of Functional Data},
booktitle = {Functional Data Analysis},
@book{ramsay+silverman_2005,
title = {Functional Data Analysis},
author = {Ramsay, James and Silverman, Bernard W.},
year = {2005},
series = {Springer {{Series}} in {{Statistics}}},
edition = {Second},
pages = {127--145},
publisher = {{Springer-Verlag}},
address = {{New York}},
doi = {10.1007/b98888},
Expand All @@ -493,25 +435,6 @@ @inbook{ramsay+silverman_2005_registration
keywords = {Multivariate analysis}
}

@inbook{ramsay+silverman_2005_basisfuncexp,
title = {Basis function expansion of the functions},
booktitle = {Functional Data Analysis},
author = {Ramsay, James and Silverman, Bernard W.},
year = {2005},
series = {Springer {{Series}} in {{Statistics}}},
edition = {Second},
pages = {161--164},
publisher = {{Springer-Verlag}},
address = {{New York}},
doi = {10.1007/b98888},
url = {https://www.springer.com/gp/book/9780387400808},
urldate = {2024-10-20},
collaborator = {Ramsay, James and Silverman, Bernard W.},
isbn = {978-0-387-40080-8},
langid = {english},
keywords = {Multivariate analysis}
}

@incollection{romeo+marzoljaen_2014_analisis,
title = {{An\'alisis del viento y la niebla en el aeropuerto de Los Rodeos (Tenerife). Cambios y tendencias}},
booktitle = {{Cambio clim\'atico y cambio global.}},
Expand Down Expand Up @@ -564,31 +487,12 @@ @article{serfling+zuo_2000_general
keywords = {62G20,62H05,halfspace depth,multivariate symmetry,simplicial depth,Statistical depth functions}
}

@inbook{srivastava+klassen_2016_functionala,
title = {Functional Data and Elastic Registration},
booktitle = {Functional and Shape Data Analysis},
author = {Srivastava, Anuj and Klassen, Eric P.},
editor = {Bicke, Peter and Diggle, Peter and Fienberg, Stephen E. and Gather, Ursula and Olkin, Ingram and Zeger, Scott},
year = {2016},
series = {Springer {{Series}} in {{Statistics}}},
pages = {73--123},
publisher = {{Springer-Verlag}},
address = {{New York}},
doi = {10.1007/978-1-4939-4020-2},
url = {https://www.springer.com/gp/book/9781493940189},
urldate = {2020-01-12},
isbn = {978-1-4939-4018-9},
langid = {english}
}

@inbook{srivastava+klassen_2016_statistical,
title = {Statistical Modeling of Functional Data},
booktitle = {Functional and Shape Data Analysis},
@book{srivastava+klassen_2016,
title = {Functional and Shape Data Analysis},
author = {Srivastava, Anuj and Klassen, Eric P.},
editor = {Bicke, Peter and Diggle, Peter and Fienberg, Stephen E. and Gather, Ursula and Olkin, Ingram and Zeger, Scott},
year = {2016},
series = {Springer {{Series}} in {{Statistics}}},
pages = {269--303},
publisher = {{Springer-Verlag}},
address = {{New York}},
doi = {10.1007/978-1-4939-4020-2},
Expand Down Expand Up @@ -679,13 +583,11 @@ @article{wang+chiou+muller_2016_fpca
keywords = {functional linear regression, functional principal component analysis, functional additive model, functional correlation, clustering and classification, time warping}
}

@inbook{wasserman_2006_nonparametric,
title = {Nonparametric Regression},
booktitle = {All of Nonparametric Statistics},
@book{wasserman_2006,
title = {All of Nonparametric Statistics},
author = {Wasserman, Larry},
year = {2006},
series = {Springer {{Texts}} in {{Statistics}}},
pages = {61--123},
publisher = {{Springer-Verlag}},
address = {{New York}},
url = {https://www.springer.com/gp/book/9780387251455},
Expand Down
151 changes: 151 additions & 0 deletions docs/sg_execution_times.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@

:orphan:

.. _sphx_glr_sg_execution_times:


Computation times
=================
**00:00.682** total execution time for 39 files **from all galleries**:

.. container::

.. raw:: html

<style scoped>
<link href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/5.3.0/css/bootstrap.min.css" rel="stylesheet" />
<link href="https://cdn.datatables.net/1.13.6/css/dataTables.bootstrap5.min.css" rel="stylesheet" />
</style>
<script src="https://code.jquery.com/jquery-3.7.0.js"></script>
<script src="https://cdn.datatables.net/1.13.6/js/jquery.dataTables.min.js"></script>
<script src="https://cdn.datatables.net/1.13.6/js/dataTables.bootstrap5.min.js"></script>
<script type="text/javascript" class="init">
$(document).ready( function () {
$('table.sg-datatable').DataTable({order: [[1, 'desc']]});
} );
</script>

.. list-table::
:header-rows: 1
:class: table table-striped sg-datatable

* - Example
- Time
- Mem (MB)
* - :ref:`sphx_glr_auto_examples_plot_pairwise_alignment.py` (``../examples/plot_pairwise_alignment.py``)
- 00:00.682
- 0.0
* - :ref:`sphx_glr_auto_examples_expand_skfda_plot_basis_subclass.py` (``../examples/expand_skfda/plot_basis_subclass.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_expand_skfda_plot_new_evaluator.py` (``../examples/expand_skfda/plot_new_evaluator.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_aemet_unsupervised.py` (``../examples/plot_aemet_unsupervised.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_boxplot.py` (``../examples/plot_boxplot.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_classification_methods.py` (``../examples/plot_classification_methods.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_clustering.py` (``../examples/plot_clustering.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_composition.py` (``../examples/plot_composition.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_depth_classification.py` (``../examples/plot_depth_classification.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_discrete_representation.py` (``../examples/plot_discrete_representation.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_elastic_registration.py` (``../examples/plot_elastic_registration.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_explore.py` (``../examples/plot_explore.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_extrapolation.py` (``../examples/plot_extrapolation.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_fpca.py` (``../examples/plot_fpca.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_fpca_inverse_transform_outl_detection.py` (``../examples/plot_fpca_inverse_transform_outl_detection.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_fpca_regression.py` (``../examples/plot_fpca_regression.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_functional_regression.py` (``../examples/plot_functional_regression.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_interpolation.py` (``../examples/plot_interpolation.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_k_neighbors_classification.py` (``../examples/plot_k_neighbors_classification.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_kernel_regression.py` (``../examples/plot_kernel_regression.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_kernel_smoothing.py` (``../examples/plot_kernel_smoothing.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_landmark_registration.py` (``../examples/plot_landmark_registration.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_landmark_shift.py` (``../examples/plot_landmark_shift.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_magnitude_shape.py` (``../examples/plot_magnitude_shape.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_magnitude_shape_synthetic.py` (``../examples/plot_magnitude_shape_synthetic.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_neighbors_functional_regression.py` (``../examples/plot_neighbors_functional_regression.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_neighbors_scalar_regression.py` (``../examples/plot_neighbors_scalar_regression.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_oneway.py` (``../examples/plot_oneway.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_oneway_synthetic.py` (``../examples/plot_oneway_synthetic.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_phonemes_classification.py` (``../examples/plot_phonemes_classification.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_radius_neighbors_classification.py` (``../examples/plot_radius_neighbors_classification.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_representation.py` (``../examples/plot_representation.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_shift_registration.py` (``../examples/plot_shift_registration.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_surface_boxplot.py` (``../examples/plot_surface_boxplot.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_examples_plot_tecator_regression.py` (``../examples/plot_tecator_regression.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_tutorial_plot_basis_representation.py` (``../tutorial/plot_basis_representation.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_tutorial_plot_getting_data.py` (``../tutorial/plot_getting_data.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_tutorial_plot_introduction.py` (``../tutorial/plot_introduction.py``)
- 00:00.000
- 0.0
* - :ref:`sphx_glr_auto_tutorial_plot_skfda_sklearn.py` (``../tutorial/plot_skfda_sklearn.py``)
- 00:00.000
- 0.0
5 changes: 3 additions & 2 deletions examples/plot_pairwise_alignment.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,8 +34,9 @@
#
# In the case of elastic registration it is taken as energy function the
# Fisher-Rao distance with a penalisation term, due to the property of
# invariance to reparameterizations of warpings functions
# :footcite:p:`srivastava+klassen_2016_functionala`.
# invariance to reparameterizations of warpings functions,
# as detailed in Srivastava and Klassen's chapter, *"Functional Data and
# Elastic Registration"*, pp. 73-123\ :footcite:p:`srivastava+klassen_2016`.
#
# .. math::
# E[f \circ \gamma, g] = d_{FR} (f \circ \gamma, g)
Expand Down
5 changes: 3 additions & 2 deletions examples/plot_phonemes_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,9 @@
# %%
# We will first load the (binary) Phoneme dataset and plot the first 20
# functions.
# We restrict the data to the first 150 variables, as done in
# :footcite:t:`ferraty+vieu_2006_computational`, because most of the
# We restrict the data to the first 150 variables, as done in Ferraty and
# Vieu's chapter, *"Computational Issues"*, pp. 99.-108\
# :footcite:ps:`ferraty+vieu_2006`, because most of the
# useful information is in the lower frequencies.
X, y = fetch_phoneme(return_X_y=True)

Expand Down
4 changes: 3 additions & 1 deletion examples/plot_tecator_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,9 @@

# %%
# For spectrometric data, the relevant information of the curves can often
# be found in the derivatives\ :footcite:`ferraty+vieu_2006_computational`.
# be found in the derivatives, as discussed in Ferraty and Vieu's chapter,
# *"Computational Issues"*, pp. 99–108\
# :footcite:`ferraty+vieu_2006`.
# Thus, we compute numerically the second derivative and plot it.
X_der = X.derivative(order=2)
X_der.plot(gradient_criteria=y)
Expand Down
7 changes: 5 additions & 2 deletions skfda/datasets/_real_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -1234,7 +1234,8 @@ def fetch_gait(

if fetch_gait.__doc__ is not None: # docstrings can be stripped off
fetch_gait.__doc__ += _gait_template.format(
cite=":footcite:p:`ramsay+silverman_2005_introduction`",
cite="Ramsay and Silverman, *'Introduction'*, pp. 1-18"
":footcite:p:`ramsay+silverman_2005`.",
bibliography=".. footbibliography::",
) + _param_descr

Expand Down Expand Up @@ -1344,7 +1345,9 @@ def fetch_handwriting(

if fetch_handwriting.__doc__ is not None: # docstrings can be stripped off
fetch_handwriting.__doc__ += _handwriting_template.format(
cite=":footcite:p:`ramsay+silverman_2005_functionala`",
cite="Ramsay and Silverman,"
"*'From Functional Data to Smooth Functions'*, pp. 37-58"
":footcite:p:`ramsay+silverman_2005`.",
bibliography=".. footbibliography::",
) + _param_descr

Expand Down
9 changes: 6 additions & 3 deletions skfda/exploratory/stats/_fisher_rao.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,8 +72,10 @@ def _fisher_rao_warping_mean(
\gamma_i(b)=b`.
The karcher mean :math:`\bar \gamma` is defined as the warping that
minimises locally the sum of Fisher-Rao squared distances
:footcite:`srivastava+klassen_2016_statistical`.
minimises locally the sum of Fisher-Rao squared distances.
See Srivastava and Klassen's chapter, *"Statistical Modeling of Functional
Data"*, pp. 269-303\ :footcite:p:`srivastava+klassen_2016`
for a detailed explanation.
.. math::
\bar \gamma = argmin_{\gamma \in \Gamma} \sum_{i=1}^{n}
Expand Down Expand Up @@ -211,7 +213,8 @@ def fisher_rao_karcher_mean(
equivalence class which makes the mean of the warpings employed be the
identity.
See :footcite:`srivastava+klassen_2016_statistical` and
See Srivastava and Klassen's chapter, *"Statistical Modeling of Functional
Data"*, pp. 269-303\ :footcite:p:`srivastava+klassen_2016` and
:footcite:`srivastava++_2011_registration`.
Args:
Expand Down
Loading

0 comments on commit 1147336

Please sign in to comment.