Skip to content

GRIPS-code/pyLBL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pyLBL: Python Line-by-line Radiative Transfer Model

docs

This application aims to provide a simple, flexible framework for calculating line-by-line spectra.

Quickstart - calculating your first spectra

Let's jump right in with a very simple example. After running through the installation steps detailed below, spectra for a point in an atmosphere can be calculated by:

from numpy import arange
from pyLBL import Database, HitranWebApi, Spectroscopy
from xarray import Dataset

# Download the line paramters and store them in a local sqlite database.
# You should only have to create the database once.  Subsequent runs can
# then re-use the already created database.
webapi = HitranWebApi("<your HITRAN api key>")
database = Database("<path to the database file>")
database.create(webapi)  # This step will take a long time.

# An xarray dataset describing the atmosphere to simulate is required.  This can be a
# cf-compliant netcdf file or explicitly defined (as below).
atmosphere = Dataset(
    data_vars={
        "play": (["z",], [98388.,], {"units": "Pa", "standard_name": "air_pressure"}),
        "tlay": (["z",], [288.99,], {"units": "K", "standard_name": "air_temperature"}),
        "xh2o": (["z",], [0.006637074,],
            {"units": "mol mol-1", "standard_name": "mole_fraction_of_water_vapor_in_air"}),
        "xco2": (["z",], [0.0003599889,],
            {"units": "mol mol-1", "standard_name": "mole_fraction_of_carbon_dioxide_in_air"}),
        "xo3": (["z",], [6.859128e-08,],
            {"units": "mol mol-1", "standard_name": "mole_fraction_of_ozone_in_air"}),
        "xn2o": (["z",], [3.199949e-07,],
            {"units": "mol mol-1", "standard_name": "mole_fraction_of_nitrous_oxide_in_air"}),
        "xco": (["z",], [1.482969e-07,],
            {"units": "mol mol-1", "standard_name": "mole_fraction_of_carbon_monoxide_in_air"}),
        "xch4": (["z",], [1.700002e-06,],
            {"units": "mol mol-1", "standard_name": "mole_fraction_of_methane_in_air"}),
        "xo2": (["z",], [0.208996,],
            {"units": "mol mol-1", "standard_name": "mole_fraction_of_oxygen_in_air"}),
        "xn2": (["z",], [0.781,],
            {"units": "mol mol-1", "standard_name": "mole_fraction_of_nitrogen_in_air"}),
     },
)

# A wavenumber grid in units of [cm-1] is also required.
grid = arange(1., 5000., 0.1)

# A Spectroscopy object controls the absorption coefficient calculation.
s = Spectroscopy(atmosphere, grid, database)
spectra = s.compute_absorption()
spectra.to_netcdf("spectra.nc")

Here your HITRAN api key can be located by registering/logging into HITRAN and looking at your profile page. More information detailing each of the above steps are located in the sections below.

Installation

Installing using pip

Make sure that you have the most recent version of pip, then run the following command in the base directory of the repository:

pip install --upgrade pip # If you need to upgrade pip.
pip install .

This command should install the model and the following dependencies:

  • matplotlib
  • netCDF4
  • numpy
  • scipy
  • SQLAlchemy
  • xarray

High-level API

This application aims to improve on existing line-by-line radiative transfer models by separating the data management and calculation. Data management is handled by a Database object, which allows the user to construct a local database of up-to-date line parameters, continuum coefficients, and cross sections without having to explicitly interact with the ascii/data files typically needed when using existing line-by-line models. Absorption spectra calculation is handled by a Spectroscopy object, which allows the user to specify which molecular lines, continua, and cross section models they would like to use. The details of each of these objects are discussed further in the next sections.

Spectral database management

A Database object provides an interface to the current HITRAN database of molecular line parameters. To create a database object of transitions for a specific set of molecules, run:

from pyLBL import Database

# Make a connection to a database.  If the database already exists and you want to
# just to re-use it, this is the only step you need.
database = Database("<path to database>")

# If however you have not already populated the database, the data can be downloaded
# and inserted by running:
from pyLBL import HitranWebApi
webapi = HitranWebApi("<your HITRAN API key>")
database.create(webapi)  # Note that this step will take a long time.

You must create an account on the HITRAN website in order to get an api key. It is included as part of your profile on the webite.

Absorption calculation

A Spectroscopy object allow users to choose which models are used to calculate the molecular lines, various molecular continua, and absorption cross sections. Currently, the supported models are as follows:

Component Models
lines pyLBL
continua mt_ckd
cross sections arts-crossfit

For example, to create a Spectroscopy object using the native pure python spectral lines model and the MT-CKD continuum, use:

from pyLBL import Spectroscopy

spectroscopy = Spectroscopy(atmosphere, grid, database, mapping=mapping,
                            lines_backend="pyLBL", continua_backend="mt_ckd")

Here the database argument is a Database object as described above. The atmosphere, mapping, and grid inputs are described in the following section.

User atmospheric inputs

Atmospheric inputs should be passed in as an xarray Dataset object. As an example, the surface layer of the first CIRC case can be described by:

def variable(data, units, standard_name):
    return (["z",], data, {"units": units, "standard_name": standard_name})

def create_circ_xarray_dataset():
    from xarray import Dataset
    temperature = [288.99,] # [K].
    pressure = [98388.,] # [Pa].
    xh2o = [0.006637074,] # [mol mol-1].
    xco2 = [0.0003599889,] # [mol mol-1].
    xo3 = [6.859128e-08,] # [mol mol-1].
    xn2o = [3.199949e-07,] # [mol mol-1].
    xco = [1.482969e-07,] # [mol mol-1].
    xch4 = [1.700002e-06,] # [mol mol-1].
    xo2 = [0.208996,] # [mol mol-1].
    xn2 = [0.781,] # [mol mol-1].
    return Dataset(
        data_vars={
            "p": variable(pressure, "Pa", "air_pressure"),
            "t": variable(temperature, "K", "air_temperature"),
            "xh2o": variable(xh2o, "mol mol-1", "mole_fraction_of_water_vapor_in_air"),
            "xco2": variable(xco2, "mol mol-1", "mole_fraction_of_carbon_dioxide_in_air"),
            "xo3": variable(xo3, "mol mol-1", "mole_fraction_of_ozone_in_air"),
            "xn2o": variable(xn2o, "mol mol-1", "mole_fraction_of_nitrous_oxide_in_air"),
            "xco": variable(xco, "mol mol-1", "mole_fraction_of_carbon_monoxide_in_air"),
            "xch4": variable(xch4, "mol mol-1", "mole_fraction_of_methane_in_air"),
            "xo2": variable(xo2, "mol mol-1", "mole_fraction_of_oxygen_in_air"),
            "xn2": variable(xn2, "mol mol-1", "mole_fraction_of_nitrogen_in_air"),
         },
         coords={
             "layer": (["z",], [1,]),
         },
    )

As shown in this example, the units of presure must be Pa, temperature must be K, and mole fraction must be mol mol<sup>-1</sup>. Users may define a dictionary specifying which variables in the dataset should be read:

mapping = {
    "play": "p", # name of pressure variable in dataset.
    "tlay": "t", # name of temperature variable in dataset.
    "mole_fraction": {
        "H2O" : "xh2o", # name of water vapor mole fraction variable in dataset.
        "CO2" : "xco2", # name of carbon dioxided mole fraction variable in dataset.
        # et cetera
    },
}

If this dictionary is not provided, the application attempts to "discover" the variables in the dataset using their CF standard_name attributes:

Variable standard_name Attribute
pressure "air_pressure"
temperature "air_temperature"
mole fraction of molecule xxx "mole_fraction_of_xxx_in_air"

For a full list of valid standard_name attributes, go here

Spectral grid input should in wavenumber [cm<sup>-1</sup>] and be defined as a numpy array, for example:

from numpy import arange
grid = arange(1., 5001., 0.1)

Also as of now, the wavenumber grid resolution should be one divided by an integer. This requirement may be relaxed in the future.

Absorption output

Absorption coefficients can be calculated using the Spectroscopy object described above by running:

absorption = spectroscopy.compute_absorption(output_format="all")

# Optional: convert dataset to netcdf.
absorption.to_netcdf("<name of output file>")

The output is returned as an xarray Dataset. The exact format of the output data depends on the value of the output_format argument. When set to "all" (which is currently the default), the dataset will return the spectra split up by molecule and mechansim (lines, continuum, cross_section). An example viewed in netCDF format would look like this:

netcdf absorption {
dimensions:
        wavenumber = 49990 ;
        mechanism = 2 ;
        z = 1 ;
variables:
        double wavenumber(wavenumber) ;
                wavenumber:_FillValue = NaN ;
                wavenumber:units = "cm-1" ;
        string mechanism(mechanism) ;
        double H2O_absorption(z, mechanism, wavenumber) ;
                H2O_absorption:_FillValue = NaN ;
                H2O_absorption:units = "m-1" ;
        double CO2_absorption(z, mechanism, wavenumber) ;
                CO2_absorption:_FillValue = NaN ;
                CO2_absorption:units = "m-1" ;
        double O3_absorption(z, mechanism, wavenumber) ;
                O3_absorption:_FillValue = NaN ;
                O3_absorption:units = "m-1" ;
        double N2O_absorption(z, mechanism, wavenumber) ;
                N2O_absorption:_FillValue = NaN ;
                N2O_absorption:units = "m-1" ;
        double CO_absorption(z, mechanism, wavenumber) ;
                CO_absorption:_FillValue = NaN ;
                CO_absorption:units = "m-1" ;
        double CH4_absorption(z, mechanism, wavenumber) ;
                CH4_absorption:_FillValue = NaN ;
                CH4_absorption:units = "m-1" ;
        double O2_absorption(z, mechanism, wavenumber) ;
                O2_absorption:_FillValue = NaN ;
                O2_absorption:units = "m-1" ;
        double N2_absorption(z, mechanism, wavenumber) ;
                N2_absorption:_FillValue = NaN ;
                N2_absorption:units = "m-1" ;
data:
        mechanism = "lines", "continuum" ;

If the output_format argument is instead set to "gas", the spectra for the different mechanims will be summed for each molecule, yielding output that looks like this (in netCDF format):

netcdf absorption {
dimensions:
        wavenumber = 49990 ;
        z = 1 ;
variables:
        double wavenumber(wavenumber) ;
                wavenumber:_FillValue = NaN ;
                wavenumber:units = "cm-1" ;
        double H2O_absorption(z, wavenumber) ;
                H2O_absorption:_FillValue = NaN ;
                H2O_absorption:units = "m-1" ;
        double CO2_absorption(z, wavenumber) ;
                CO2_absorption:_FillValue = NaN ;
                CO2_absorption:units = "m-1" ;
        double O3_absorption(z, wavenumber) ;
                O3_absorption:_FillValue = NaN ;
                O3_absorption:units = "m-1" ;
        double N2O_absorption(z, wavenumber) ;
                N2O_absorption:_FillValue = NaN ;
                N2O_absorption:units = "m-1" ;
        double CO_absorption(z, wavenumber) ;
                CO_absorption:_FillValue = NaN ;
                CO_absorption:units = "m-1" ;
        double CH4_absorption(z, wavenumber) ;
                CH4_absorption:_FillValue = NaN ;
                CH4_absorption:units = "m-1" ;
        double O2_absorption(z, wavenumber) ;
                O2_absorption:_FillValue = NaN ;
                O2_absorption:units = "m-1" ;
        double N2_absorption(z, wavenumber) ;
                N2_absorption:_FillValue = NaN ;
                N2_absorption:units = "m-1" ;
}

Lastly, if the output_format argument is set to any other value, only the total absorption spectra (summed over all molecules) will be returned. In netCDF format, the resulting dataset will appear like this:

netcdf absorption {
  dimensions:
        wavenumber = 49990 ;
        z = 1 ;
  variables:
      double wavenumber(wavenumber) ;
              wavenumber:_FillValue = NaN ;
              wavenumber:units = "cm-1" ;
      double absorption(z, wavenumber) ;
              absorption:_FillValue = NaN ;
              absorption:units = "m-1" ;
}

About

Python line-by-line radiative transfer model

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •