Skip to content

Horizon-School-of-Digital-Technologies/KafkaMongo-HeartDiseaseProject

 
 

Repository files navigation

KafkaMongo-HeartDiseaseProject

Creation of a message Gateaway with Kafka for an hospital.

Explanation of chosen topic in 'Heath EDA.ipynb'.

Video Demo : https://www.youtube.com/watch?v=mxIbyMutzSI

Link to Answers to project questions: https://docs.google.com/document/d/1G1L64XvYgUH9FvcaLnUVnGDb_ZeiOB2pmNKp6U3pv14/edit?usp=sharing

Project Files Overview :

docker-compose.yml & Docker File : Use to build the cluster

Heath EDA.ipynb : Exploratory Data Analysis to decide the filter for the message broker.

heart.csv : CSV file from Kaggle : https://www.kaggle.com/datasets/zhaoyingzhu/heartcsv?

Producer.ipynb : Producer code with python.

Consumer Surveillance.ipynb, Consumer Malade.ipynb : Consumer code.

Tutorial :

DOCKER

Creating the cluster :

sudo docker-compose up --build -d

Connecting to containers :

Kafka :

sudo docker exec -it kafka bash

Mongo :

sudo docker exec -it mongo bash

Connect :

sudo docker exec -it connect bash

To use the control-center API :

http://localhost:9021/

Creation and configuration of Topics and connectors can be done with control-center API or Manualy.

TOPIC CREATION

WITH CONTROL-CENTER API

Go to Cluster on the left bar -> Topics -> Add a Topic

Here we are creating 3 topics :

"MaladeUrgence", "NonMalade", "NonMaladeSurveillance" each with number of partition = 2.

MANUALLY

connect to kafka container :

sudo docker exec -it kafka bash

To create the topics :

/usr/bin/kafka-topics --create --topic MaladeUrgence --bootstrap-server localhost:9092 --partitions 2 --replication-factor 1

/usr/bin/kafka-topics --create --topic NonMaladeSurveillance --bootstrap-server localhost:9092 --partitions 2 --replication-factor 1

/usr/bin/kafka-topics --create --topic NonMalade --bootstrap-server localhost:9092 --partitions 2 --replication-factor 1

MONGO DATABASE

connect to mongodb container :

`sudo docker exec -it mongo bash

` Connect to mongo as root user :

mongo --host localhost -u root -p root

Create Database Hopital and a collection MaladeUrgence :

use Hospital

db.createCollection(‘MaladeUrgence’)

The collection is empty, see with :

db.MaladeUrgence.find()

MONGO SINK CONNECTOR CONFIGURATION

WITH CONTROL-CENTER API

Go to Cluster on the left bar -> Connect -> click on cluster-name connect-default -> Add Connector -> choose mongosinkconnector

Choose topic name : MaladeUrgence

Choose Connector name : UrgenceConnector

Task max : 1

Key Convertor Class: org.apache.kafka.connect.storage.StringConverter

Value Convertor Class : org.apache.kafka.connect.storage.StringConverter

MongoDb Connection URI : mongodb://root:root@mongo:27017

The MongoDb Database Name: Hopital

The default MongoDB collection name : MaladeUrgence

Continue -> Launch -> The connector is created !

MANUALLY WITH REST API:

sudo docker exec -it connect bash

curl -X POST -H "Content-Type: application/json" --data '
  {"name": "UrgenceConnector",
   "config": {
     "connector.class":"com.mongodb.kafka.connect.MongoSinkConnector",
     "tasks.max":"1",
     "topics":"MaladeUrgence",
     "connection.uri":"mongodb://root:root@mongo:27017",
     "database":"Hopital",
     "collection":"MaladeUrgence",
     "key.converter":"org.apache.kafka.connect.storage.StringConverter",
     "key.converter.schemas.enable":false,
     "value.converter":"org.apache.kafka.connect.storage.StringConverter",
     "value.converter.schemas.enable":false
 }}' http://localhost:8083/connectors -w "\n"

CONNECTING TO TOPICS :

On 3 separate shell connect to kafka then :

Shell 1 : /usr/bin/kafka-console-producer --topic MaladeUrgence --broker-list localhost:9092

Shell 2: /usr/bin/kafka-console-producer --topic NonMaladeSurveillance --broker-list localhost:9092

Shell 3 : /usr/bin/kafka-console-producer --topic NonMalade --broker-list localhost:9092

Don't shut those, we have to wait for the producer to produce message!

CONNECTORS :

Two connectors where create with python-kafka :

Consumer Surveillance.ipynb

Consumer Malade.ipynb

FOR PRODUCER :

The producer was create with python-Kafka on jupyter notebook.

You can manually write message on kafka with:

/usr/bin/kafka-console-producer --topic topic-name --broker-list localhost:9092

topic-name is the name of the topic without brackets

The python producer : Producer.ipynb

Wait at least 1 or 2 minutes.

Veryfiying the database :

connect to mongo as root user

mongo --host localhost -u root -p root

use Hospital

db.MaladeUrgence.find()

Entries have been created in the database ! GG ! Great job!

BONUS : MANAGING MONGODB ACCESS.

Users aside the database administrator shouldn't have write or update access to the database. We are creating a read only user:

db.createUser(
{
user: "doctor1",
pwd: "doctor",
roles: [
{
role: "read",
db: "Hopital"
}
]
}
)`

Even for the database administrator, it should not be easy to freely delete data, this access should be reserve to the root user which will be use only when needed. Least privilege access is always a good practice in database administration.

We create a HopitalAdmnistrator Role that can read; update and write in database but cannot delete entries.

And we create a admin user associate to this entity.

db.createRole(
`   {
     role: "HopitalAdministrator", 
     privileges: [
       {
          resource: {
            role: 'readWrite',
            db: 'Hopital'
          }, actions: ["find","update","insert"]
        }
     ],
     roles: []
   }
)
db.createUser(
{
user: "admin1",
pwd: "admin12345",
roles: [
{
role: "HopitalAdministrator", db: "Hopital"
},
)

Référence

https://www.ijrte.org/wp-content/uploads/papers/v8i2S3/B11630782S319.pdf

https://www.mongodb.com/docs/kafka-connector/current/

https://kafka.apache.org/documentation/#:~:text=Producers%20are%20those%20client%20applications,read%20and%20process)%20these%20events.

https://kafka-python.readthedocs.io/en/master/

https://www.mongodb.com/docs/manual/core/authorization/#:~:text=MongoDB%20employs%20Role%2DBased%20Access,no%20access%20to%20the%20system.

To go Further ...

To go further, we can use machine learning algorithm.

For exemple, using logistic regression will help us determine if our patient is sick or not.

In our use case, we can use a logistic regression on a part of the data and deploy the model on our producer to determine if using the data (aside the target value) our non-sick patient is predicted as sick with the model. Those patient should go to the NonMaladeSurveillance topic.

Of course our model should be trained on a portion of the dataset and deployed on another.

Here the dataset is too small for a good model.

In a real environment:

We will start with a manual filter like we did to classify streaming data.

Those data will be stored in a database.

Those batch data will be used to train and test a model.

The model will be deploy in the producer for better performance.

Data will continue to be provided in stream.

After a while, new batch data should update the model.

And the cycle continue ...

About

Creation of a message Gateaway with Kafka for an hospital - Michael Ben Ali

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.9%
  • Dockerfile 0.1%